Menu Close

Let-lim-x-3-x-2-f-x-9-what-is-f-x-




Question Number 173334 by Raxreedoroid last updated on 09/Jul/22
Let lim_(x→∞)  (3^x /2^(f(x)) )=9  what is f(x)?
$$\mathrm{Let}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} }{\mathrm{2}^{{f}\left({x}\right)} }=\mathrm{9} \\ $$$$\mathrm{what}\:\mathrm{is}\:{f}\left({x}\right)? \\ $$
Answered by mahdipoor last updated on 09/Jul/22
ln9=lim_(x→∞) (xln3−f(x)ln2)  if f(x)=ax+b ⇒  ⇒=lim_(x→∞) ((ln3−a.ln2)x−b.ln2)  ⇒f(x)=((ln3)/(ln2))x−((ln9)/(ln2))
$$\mathrm{ln9}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{xln3}−\mathrm{f}\left(\mathrm{x}\right)\mathrm{ln2}\right) \\ $$$$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b}\:\Rightarrow \\ $$$$\Rightarrow=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\mathrm{ln3}−\mathrm{a}.\mathrm{ln2}\right)\mathrm{x}−\mathrm{b}.\mathrm{ln2}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{{ln}\mathrm{3}}{{ln}\mathrm{2}}{x}−\frac{{ln}\mathrm{9}}{{ln}\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *