Menu Close

Let-m-amp-n-be-two-positive-numbers-greater-than-1-If-lim-p-0-e-cos-p-n-e-p-m-1-2-e-then-n-m-




Question Number 162399 by cortano last updated on 29/Dec/21
  Let m & n be two positive numbers    greater than 1 . If lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = (1/2)e    then (n/m)=?
Letm&nbetwopositivenumbersgreaterthan1.Iflimp0ecos(pn)epm=12ethennm=?
Commented by blackmamba last updated on 29/Dec/21
 lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = e lim_(p→0)  ((e^(cos (p^n )−1) −1)/p^m ) = (1/2)e   lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) ×lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   [ notice that lim_(x→0)  ((e^x −1)/x) = 1 ]   [ lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) = 1 ]    ⇔ lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   ⇔ lim_(p→0)  ((−2sin^2 ((p^n /2)))/p^m ) =(1/2)   ⇔ lim_(p→0)  (((((sin ((p^n /2)))/(((p^n /2)))))^2 .((p^(2n) /4)))/p^m ) =^?  −(1/4)   2n=m ⇒(n/m)= (n/(2m)) = (1/2)
limp0ecos(pn)epm=elimp0ecos(pn)11pm=12elimp0ecos(pn)11cos(pn)1×limp0cos(pn)1pm=12[noticethatlimx0ex1x=1][limp0ecos(pn)11cos(pn)1=1]limp0cos(pn)1pm=12limp02sin2(pn2)pm=12limp0(sin(pn2)(pn2))2.(p2n4)pm=?142n=mnm=n2m=12
Answered by qaz last updated on 29/Dec/21
lim_(p→0) ((e^(cos (p^n )) −e)/p^m )  =lim_(p→0) ((e(e^(cos (p^n )−1) −1))/p^m )  =elim_(p→0) ((cos (p^n )−1)/p^m )  =elim_(p→0) ((−(1/2)p^(2n) )/p^m )  =−(1/2)e  ⇒(n/m)=(1/2)
limp0ecos(pn)epm=limp0e(ecos(pn)11)pm=elimp0cos(pn)1pm=elimp012p2npm=12enm=12

Leave a Reply

Your email address will not be published. Required fields are marked *