Menu Close

Let-m-be-the-smallest-odd-positive-integer-for-which-1-2-m-is-a-square-of-an-integer-and-let-n-be-the-smallest-even-positive-integer-for-which-1-2-n-is-a-square-of-an-integer-What




Question Number 19696 by Tinkutara last updated on 14/Aug/17
Let m be the smallest odd positive  integer for which 1 + 2 + ... + m is a  square of an integer and let n be the  smallest even positive integer for  which 1 + 2 + ... + n is a square of an  integer. What is the value of m + n?
Letmbethesmallestoddpositiveintegerforwhich1+2++misasquareofanintegerandletnbethesmallestevenpositiveintegerforwhich1+2++nisasquareofaninteger.Whatisthevalueofm+n?
Answered by Rasheed.Sindhi last updated on 15/Aug/17
Case-1: m∈O  1+2+...m=((m(m+1))/2)  Let m=2k+1  ((m(m+1))/2)=(((2k+1)(2k+2))/2)=a^2 (say)  ((4k^2 +4k+2k+2)/2)=a^2   2k^2 +3k+1−a^2   k=((−3±(√(9−4(2)(1−a^2 ))))/4)  k=((−3±(√(1+8a^2 ))))/4)  a=1⇒k=((−3±3)/2)=0,−3  k=0⇒m=2k+1=1                m=1  is the smallest positive  integer for which 1+2+...+m  is perfect square.  k=−3⇒m=2(−3)+1=−5  (−ve)  So  −5 is discardable.  a=6 ⇒(√(1+8(6)^2 ))=17  k=((−3±17)/4)=(7/2),−5  Both are discardable.  Case−2: n∈E  1+2+...+n=b^2   ((n(n+1))/2)=b^2   Let n=2k  ((2k(2k+1))/2)=b^2   2k^2 +k−b^2 =0  k=((−1±(√(1−4(2)(−b^2 ))))/4)  k=((−1±(√(1+8b^2 )))/4)  b=1⇒k=((−1±3)/4)=−1,(1/2)  Both are discardable.  b=6⇒k=((−1±17)/4)=−(9/2),4  −(9/2) is discardable.  k=4⇒n=8  1+2+...+8=((8×9)/2)=36                    n=8       is the smallest positive  integer for which 1+2+...+n  is perfect square.
Case1:mO1+2+m=m(m+1)2Letm=2k+1m(m+1)2=(2k+1)(2k+2)2=a2(say)4k2+4k+2k+22=a22k2+3k+1a2k=3±94(2)(1a2)4k=3±1+8a2)4a=1k=3±32=0,3k=0m=2k+1=1m=1isthesmallestpositiveintegerforwhich1+2++misperfectsquare.k=3m=2(3)+1=5(ve)So5isdiscardable.a=61+8(6)2=17k=3±174=72,5Botharediscardable.Case2:nE1+2++n=b2n(n+1)2=b2Letn=2k2k(2k+1)2=b22k2+kb2=0k=1±14(2)(b2)4k=1±1+8b24b=1k=1±34=1,12Botharediscardable.b=6k=1±174=92,492isdiscardable.k=4n=81+2++8=8×92=36n=8isthesmallestpositiveintegerforwhich1+2++nisperfectsquare.
Commented by Tinkutara last updated on 15/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *