Menu Close

let-m-inff-x-x-a-b-and-M-supf-x-x-a-b-prove-that-b-a-2-a-b-f-x-dx-a-b-dx-f-x-b-a-2-m-M-2-4mM-




Question Number 129873 by Bird last updated on 20/Jan/21
let m=inff(x)_(x∈[a,b])   and M=supf(x)_(x∈[a,b])   prove that (b−a)^2 ≤∫_a ^b f(x)dx.∫_a ^b  (dx/(f(x)))  ≤(b−a)^2 ×(((m+M)^2 )/(4mM))
$${let}\:{m}={inff}\left({x}\right)_{{x}\in\left[{a},{b}\right]} \\ $$$${and}\:{M}={supf}\left({x}\right)_{{x}\in\left[{a},{b}\right]} \\ $$$${prove}\:{that}\:\left({b}−{a}\right)^{\mathrm{2}} \leqslant\int_{{a}} ^{{b}} {f}\left({x}\right){dx}.\int_{{a}} ^{{b}} \:\frac{{dx}}{{f}\left({x}\right)} \\ $$$$\leqslant\left({b}−{a}\right)^{\mathrm{2}} ×\frac{\left({m}+{M}\right)^{\mathrm{2}} }{\mathrm{4}{mM}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *