Menu Close

let-m-N-and-0-lt-x-lt-m-if-i-m-1-x-x-1-prove-that-2-m-i-x-m-i-where-x-is-integer-part-of-x-and-m-i-is-a-binomial-coefficient-




Question Number 163718 by HongKing last updated on 09/Jan/22
let  m∈N  and  0<x<m  if   i = [(((m + 1)x)/(x + 1))]  prove that   2 ((m),((  i)) ) ≥ x^(m-i)   where [x] is integer part of x and  ((m),((  i)) )  is a binomial coefficient
letmNand0<x<mifi=[(m+1)xx+1]provethat2(mi)xmiwhere[x]isintegerpartofxand(mi)isabinomialcoefficient

Leave a Reply

Your email address will not be published. Required fields are marked *