Menu Close

let-m-N-and-0-lt-x-lt-m-if-i-m-1-x-x-1-prove-that-2-m-i-x-m-i-where-x-is-integer-part-of-x-and-m-i-is-a-binomial-coefficient-




Question Number 163718 by HongKing last updated on 09/Jan/22
let  m∈N  and  0<x<m  if   i = [(((m + 1)x)/(x + 1))]  prove that   2 ((m),((  i)) ) ≥ x^(m-i)   where [x] is integer part of x and  ((m),((  i)) )  is a binomial coefficient
$$\mathrm{let}\:\:\mathrm{m}\in\mathbb{N}\:\:\mathrm{and}\:\:\mathrm{0}<\mathrm{x}<\mathrm{m} \\ $$$$\mathrm{if}\:\:\:\boldsymbol{\mathrm{i}}\:=\:\left[\frac{\left(\mathrm{m}\:+\:\mathrm{1}\right)\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}\right] \\ $$$$\mathrm{prove}\:\mathrm{that}\:\:\:\mathrm{2}\begin{pmatrix}{\mathrm{m}}\\{\:\:\mathrm{i}}\end{pmatrix}\:\geqslant\:\mathrm{x}^{\boldsymbol{\mathrm{m}}-\boldsymbol{\mathrm{i}}} \\ $$$$\mathrm{where}\:\left[\boldsymbol{\mathrm{x}}\right]\:\mathrm{is}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}\:\mathrm{and}\:\begin{pmatrix}{\mathrm{m}}\\{\:\:\mathrm{i}}\end{pmatrix} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{binomial}\:\mathrm{coefficient} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *