Menu Close

let-n-1-and-2n-2-2n-1-solve-for-real-numbers-x-2-x-2-x-2-n-




Question Number 156575 by MathSh last updated on 12/Oct/21
let  n≥1  and  λ=2n^2 -2n+1  solve for real numbers:  (√(λ + x^2 )) - (√(λ - x^2 )) = (x^2 /n)
letn1andλ=2n22n+1solveforrealnumbers:λ+x2λx2=x2n
Commented by MathSh last updated on 13/Oct/21
Thank you dear Ser  Solution if possible please
ThankyoudearSerSolutionifpossibleplease
Answered by mr W last updated on 13/Oct/21
x^2 ≤λ=2n(n−1)+1  2λ−2(√(λ^2 −x^4 ))=(x^4 /n^2 )  λ−(x^4 /(2n^2 ))=(√(λ^2 −x^4 ))  λ^2 +(x^8 /(4n^4 ))−(λ/n^2 )x^4 =λ^2 −x^4   x^8 =4n^2 (λ−n^2 )x^4   ⇒x=0  or  ⇒x^4 =4n^2 (λ−n^2 )=4n^2 (n−1)^2   ⇒x^2 =2n(n−1)=λ−1<λ ✓  ⇒x=±(√(2n(n−1)))
x2λ=2n(n1)+12λ2λ2x4=x4n2λx42n2=λ2x4λ2+x84n4λn2x4=λ2x4x8=4n2(λn2)x4x=0orx4=4n2(λn2)=4n2(n1)2x2=2n(n1)=λ1<λx=±2n(n1)
Commented by MathSh last updated on 13/Oct/21
Perfect dear Ser, thankyou
PerfectdearSer,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *