Menu Close

Let-n-1-and-integer-P-n-X-1-X-n-1-X-n-1-Factorize-P-n-2-Deduce-S-n-k-1-n-4-cotan-2-kpi-2n-1-




Question Number 125760 by snipers237 last updated on 13/Dec/20
Let n≥1 and integer, P_n (X)=(1+X)^n −(1−X)^n    1) Factorize P_n   2)Deduce  S_n =Π_(k=1) ^n [4+cotan^2 (((kπ)/(2n+1))) ]
$${Let}\:{n}\geqslant\mathrm{1}\:{and}\:{integer},\:{P}_{{n}} \left({X}\right)=\left(\mathrm{1}+{X}\right)^{{n}} −\left(\mathrm{1}−{X}\right)^{{n}} \: \\ $$$$\left.\mathrm{1}\right)\:{Factorize}\:{P}_{{n}} \\ $$$$\left.\mathrm{2}\right){Deduce}\:\:{S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left[\mathrm{4}+{cotan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:\right] \\ $$
Answered by mathmax by abdo last updated on 13/Dec/20
1) P_n (x)=0 ⇔(((1−x)/(1+x)))^n  =1 =e^(i2kπ)  ⇒((1−x)/(1+x))=e^((i2kπ)/n)  ⇒  1−x=e^((i2kπ)/n) +e^((i2kπ)/n) x ⇒(1+e^((i2kπ)/n) )x=1−e^((i2kπ)/n)  ⇒so the roots are  x_k =((1−e^((i2kπ)/n) )/(1+e^((i2kπ)/n) )) =((1−cos(((2kπ)/n))−isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =((2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n))))=((−isin(((kπ)/n))e^((ikπ)/n) )/(cos(((kπ)/n))e^((ikπ)/n) )) =−itan(((kπ)/n))  k∈[[o,n−1]] ⇒P_n (x)=λ Π_(k=0) ^(n−1) (x+itan(((kπ)/n))) let find λ  we have P_n (x)=(x+1)^n −(−1)^n (x−1)^n   =Σ_(k=0) ^n  C_n ^k  x^k  −(−1)^n  Σ_(k=0) ^n  C_n ^k  x^k (−1)^(n−k)   =Σ_(k=0) ^n  C_n ^k  x^k −Σ_(k0) ^n  C_n ^k (−1)^k  x^k   =Σ_(k=0) ^n C_n ^k (1−(−1)^k )x^k  =2Σ_(p=0) ^([((n−1)/2)])  C_n ^(2p+1)  x^(2p+1)   ⇒λ =2 C_n ^(2[((n−1)/2)]+1) ⇒P_n (x)=2 C_n ^(2[((n−1)/2)]+1)  Π_(k=0) ^(n−1) (x+itan(((kπ)/n)))  =2x C_n ^(2[((n−1)/2)]+1)  Π_(k=1) ^(n−1) (x+itan(((kπ)/n)))  P_n (2).P_n (−2) =−16λ_n ^2  Π_(k=1) ^n (2+itan(((kπ)/n)))Π_(k=1) ^n (−2+itan(((kπ)/n)))  =−16λ_n ^2 (−1)^n  Π_(k=1) ^n (2+itan(((kπ)/n)))(2−itan(((kπ)/n)))  =16λ_n ^2  (−1)^(n+1)  Π_(k=1) ^n (4+tan^2 (((kπ)/n)))...be continued...
$$\left.\mathrm{1}\right)\:\mathrm{P}_{\mathrm{n}} \left(\mathrm{x}\right)=\mathrm{0}\:\Leftrightarrow\left(\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)^{\mathrm{n}} \:=\mathrm{1}\:=\mathrm{e}^{\mathrm{i2k}\pi} \:\Rightarrow\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}=\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} \:\Rightarrow \\ $$$$\mathrm{1}−\mathrm{x}=\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} +\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} \mathrm{x}\:\Rightarrow\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} \right)\mathrm{x}=\mathrm{1}−\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} \:\Rightarrow\mathrm{so}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are} \\ $$$$\mathrm{x}_{\mathrm{k}} =\frac{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} }{\mathrm{1}+\mathrm{e}^{\frac{\mathrm{i2k}\pi}{\mathrm{n}}} }\:=\frac{\mathrm{1}−\mathrm{cos}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)−\mathrm{isin}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)}{\mathrm{1}+\mathrm{cos}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)+\mathrm{isin}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)} \\ $$$$=\frac{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)−\mathrm{2isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)}{\mathrm{2cos}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)+\mathrm{2isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)}=\frac{−\mathrm{isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{e}^{\frac{\mathrm{ik}\pi}{\mathrm{n}}} }{\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{e}^{\frac{\mathrm{ik}\pi}{\mathrm{n}}} }\:=−\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right) \\ $$$$\mathrm{k}\in\left[\left[\mathrm{o},\mathrm{n}−\mathrm{1}\right]\right]\:\Rightarrow\mathrm{P}_{\mathrm{n}} \left(\mathrm{x}\right)=\lambda\:\prod_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right)\:\mathrm{let}\:\mathrm{find}\:\lambda \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{P}_{\mathrm{n}} \left(\mathrm{x}\right)=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} −\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{n}} \\ $$$$=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{x}^{\mathrm{k}} \:−\left(−\mathrm{1}\right)^{\mathrm{n}} \:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{x}^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{k}} \\ $$$$=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{x}^{\mathrm{k}} −\sum_{\mathrm{k0}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{k}} \:\mathrm{x}^{\mathrm{k}} \\ $$$$=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \left(\mathrm{1}−\left(−\mathrm{1}\right)^{\mathrm{k}} \right)\mathrm{x}^{\mathrm{k}} \:=\mathrm{2}\sum_{\mathrm{p}=\mathrm{0}} ^{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{2p}+\mathrm{1}} \:\mathrm{x}^{\mathrm{2p}+\mathrm{1}} \\ $$$$\Rightarrow\lambda\:=\mathrm{2}\:\mathrm{C}_{\mathrm{n}} ^{\mathrm{2}\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1}} \Rightarrow\mathrm{P}_{\mathrm{n}} \left(\mathrm{x}\right)=\mathrm{2}\:\mathrm{C}_{\mathrm{n}} ^{\mathrm{2}\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1}} \:\prod_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right) \\ $$$$=\mathrm{2x}\:\mathrm{C}_{\mathrm{n}} ^{\mathrm{2}\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]+\mathrm{1}} \:\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right) \\ $$$$\mathrm{P}_{\mathrm{n}} \left(\mathrm{2}\right).\mathrm{P}_{\mathrm{n}} \left(−\mathrm{2}\right)\:=−\mathrm{16}\lambda_{\mathrm{n}} ^{\mathrm{2}} \:\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{2}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right)\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(−\mathrm{2}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right) \\ $$$$=−\mathrm{16}\lambda_{\mathrm{n}} ^{\mathrm{2}} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{2}+\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right)\left(\mathrm{2}−\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right) \\ $$$$=\mathrm{16}\lambda_{\mathrm{n}} ^{\mathrm{2}} \:\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} \:\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\right)…\mathrm{be}\:\mathrm{continued}… \\ $$
Answered by mindispower last updated on 13/Dec/20
P_n (X)=0  ⇒(((1+x)/(1−x)))^n =1  ((1+x)/(1−x))=e^(2ikπ/n)   k∈[0,n[  x=((1−e^((2ikπ)/n) )/(1+e^((2ikπ)/n) ))=−((e^((ikπ)/n) −e^(−((ikπ)/n)) )/(e^((ikπ)/n) +e^(−i((kπ)/n)) ))=−itg(((kπ)/n))  k∈[0,n−1]  if n=2m,k≠m  P_n (x)=aΠ_(k∈[0,n−1]) (X+itg(((kπ)/n)))if n=2m+1  =Π_(k∈[0,n−1]≠(n/2)) (X+itg(((kπ)/n))),n=2m  one easy way too see this  if n=2m,degp_(2m) ≤2m−1  number of roots≤2m−1  2)  P_(2n+1) =2Π_(0≤k≤2n) (X+itg(((kπ)/(2n+1))))  P_(2n+1) =2x.Π_(k=1) ^n (X+itg(((kπ)/(2n+1))).Π_(k=n+1) ^(2n) (X+itg(((kπ)/(2n+1))))  =2xΠ_(k=1) ^n (X+itg(((kπ)/(2n+1))))Π_(k=1) ^n (X+itg((((2n+1−k)π)/(2n+1))))  =2xΠ_(k=1) ^n (X+itg(((kπ)/(2n+1))))Π_(k=1) ^n (X+itg(π−((kπ)/(2n+1))))  =2xΠ_(k=1) ^n (X+itg(((kπ)/(2n+1))))Π_(k=1) ^n (X−itg(((kπ)/(2n+1))))  =2xΠ_(k=1) ^n (X^2 +tg^2 (((kπ)/(2n+1))))=p_(2n+1) (x)  x=(1/2)  ⇒p_(2n+1) ((1/2))=Π_(k=1) ^n ((1/4)+(1/(cotan^2 (((kπ)/(2n+1))))))..E  =Π_(k=1) ^n (1/(4cotan^2 (((kπ)/(2n+1)))=T)) .Π_(k=1) ^n (4+cotan^2 (((kπ)/(2n+1)))_(=S_n )   T_n =(1/4^n )Π_(k=1) ^n tg^2 (((kπ)/(2n+1)))    2xΠ_(k=1) ^n (X^2 +tg^2 (((kπ)/(2n+1))))=p_(2n+1) (x)  ⇒Π_(k=1) ^n (X^2 +tg^2 (((kπ)/(2n+1))))=((P_(2n+1) (x))/(2x))  ⇒lim_(x→0) Π(X^2 +tg^2 (((kπ)/(2n+1)))=(1/2).lim_(x→0) ((P_(2n+1) (x))/x)  =(1/2)P_(2n+1) ^′ (0)=(1/2)((2n+1)+(2n+1))=2n+1  ⇒Π_(k=1) ^n tg^2 (((kπ)/(2n+1)))=2n+1  T_n =(1/(4^n (2n+1)))    E⇔P_(2n+1) ((1/2))=(1/(4^n (2n+1))).S_n =((3/2))^n −(1/2^n )  S_n =(2n+1)(6^n −2^n )
$${P}_{{n}} \left({X}\right)=\mathrm{0} \\ $$$$\Rightarrow\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{{n}} =\mathrm{1} \\ $$$$\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}={e}^{\mathrm{2}{ik}\pi/{n}} \\ $$$${k}\in\left[\mathrm{0},{n}\left[\right.\right. \\ $$$${x}=\frac{\mathrm{1}−{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} }{\mathrm{1}+{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} }=−\frac{{e}^{\frac{{ik}\pi}{{n}}} −{e}^{−\frac{{ik}\pi}{{n}}} }{{e}^{\frac{{ik}\pi}{{n}}} +{e}^{−{i}\frac{{k}\pi}{{n}}} }=−{itg}\left(\frac{{k}\pi}{{n}}\right) \\ $$$${k}\in\left[\mathrm{0},{n}−\mathrm{1}\right] \\ $$$${if}\:{n}=\mathrm{2}{m},{k}\neq{m} \\ $$$${P}_{{n}} \left({x}\right)={a}\underset{{k}\in\left[\mathrm{0},{n}−\mathrm{1}\right]} {\prod}\left({X}+{itg}\left(\frac{{k}\pi}{{n}}\right)\right){if}\:{n}=\mathrm{2}{m}+\mathrm{1} \\ $$$$=\underset{{k}\in\left[\mathrm{0},{n}−\mathrm{1}\right]\neq\frac{{n}}{\mathrm{2}}} {\prod}\left({X}+{itg}\left(\frac{{k}\pi}{{n}}\right)\right),{n}=\mathrm{2}{m} \\ $$$${one}\:{easy}\:{way}\:{too}\:{see}\:{this} \\ $$$${if}\:{n}=\mathrm{2}{m},{degp}_{\mathrm{2}{m}} \leqslant\mathrm{2}{m}−\mathrm{1}\:\:{number}\:{of}\:{roots}\leqslant\mathrm{2}{m}−\mathrm{1} \\ $$$$\left.\mathrm{2}\right) \\ $$$${P}_{\mathrm{2}{n}+\mathrm{1}} =\mathrm{2}\underset{\mathrm{0}\leqslant{k}\leqslant\mathrm{2}{n}} {\prod}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right) \\ $$$${P}_{\mathrm{2}{n}+\mathrm{1}} =\mathrm{2}{x}.\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right).\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{2}{n}} {\prod}}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)\right. \\ $$$$=\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\frac{\left(\mathrm{2}{n}+\mathrm{1}−{k}\right)\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right) \\ $$$$=\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\pi−\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right) \\ $$$$=\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}+{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}−{itg}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right) \\ $$$$=\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}^{\mathrm{2}} +{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)={p}_{\mathrm{2}{n}+\mathrm{1}} \left({x}\right) \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{p}_{\mathrm{2}{n}+\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{{cotan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}\right)..{E} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{1}}{\mathrm{4}{cotan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)={T}}\:.\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{4}+{cotan}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\underset{={S}_{{n}} } {\right)}\right. \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}^{{n}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$ \\ $$$$\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}^{\mathrm{2}} +{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)={p}_{\mathrm{2}{n}+\mathrm{1}} \left({x}\right) \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({X}^{\mathrm{2}} +{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\right)=\frac{{P}_{\mathrm{2}{n}+\mathrm{1}} \left({x}\right)}{\mathrm{2}{x}} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\Pi\left({X}^{\mathrm{2}} +{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{P}_{\mathrm{2}{n}+\mathrm{1}} \left({x}\right)}{{x}}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{P}_{\mathrm{2}{n}+\mathrm{1}} ^{'} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\mathrm{2}{n}+\mathrm{1}\right)+\left(\mathrm{2}{n}+\mathrm{1}\right)\right)=\mathrm{2}{n}+\mathrm{1} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{tg}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)=\mathrm{2}{n}+\mathrm{1} \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$ \\ $$$${E}\Leftrightarrow{P}_{\mathrm{2}{n}+\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{4}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}.{S}_{{n}} =\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${S}_{{n}} =\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{6}^{{n}} −\mathrm{2}^{{n}} \right) \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *