Menu Close

Let-N-2-1224-1-S-2-153-2-77-1-T-2-408-2-204-1-then-which-of-the-following-statment-is-correct-a-S-and-T-both-divide-N-b-only-S-divides-N-c-only-T-divides-N-d-Neither-S-




Question Number 30119 by rahul 19 last updated on 16/Feb/18
Let  N= 2^(1224)  −1.  S= 2^(153) +2^(77) +1.  T= 2^(408) −2^(204) +1.  then which of the following statment is   correct?  a) S and T both divide N.  b) only S divides N.  c) only T divides N.  d) Neither S nor T divides N.
LetN=212241.S=2153+277+1.T=24082204+1.thenwhichofthefollowingstatmentiscorrect?a)SandTbothdivideN.b)onlySdividesN.c)onlyTdividesN.d)NeitherSnorTdividesN.
Commented by rahul 19 last updated on 16/Feb/18
sir how does this prooves that S divides  N? as the ans. is A.
sirhowdoesthisproovesthatSdividesN?astheans.isA.
Answered by Giannibo last updated on 16/Feb/18
    N=2^(1224) −1^(1224) =(2^(612) −1^(612) )(2^(612) +1^(612) )=  (2^(306) −1)(2^(306) +1)(2^(612) +1)=  2^(153) +2^(77) ≡−1modS ⇒2^(154) +2^(78) ≡−2modS⇒2^(154) +2^(78) +1=(2^(77) +1)^2 ≡−1modS  2^(153) ≡(−2^(77) −1)modS  (2^(153) )^2 ≡(2^(77) +1)^2 modS ⇒2^(306) ≡−1modS⇒2^(306) +1≡0modS  S∣(2^(306) +1) & (2^(306) +1)∣N  S∣N  N=(2^(612) −1)(2^(612) +1)=((2^(204) )^3 +1^3 )(2^(612) −1)=  (2^(204) +1)((2^(204) )^2 −2^(204) +1)(2^(612) −1)  T=2^(408) −2^(204) +1∣N
N=2122411224=(26121612)(2612+1612)=(23061)(2306+1)(2612+1)=2153+2771modS2154+2782modS2154+278+1=(277+1)21modS2153(2771)modS(2153)2(277+1)2modS23061modS2306+10modSS(2306+1)&(2306+1)NSNN=(26121)(2612+1)=((2204)3+13)(26121)=(2204+1)((2204)22204+1)(26121)T=24082204+1N
Commented by rahul 19 last updated on 17/Feb/18
what is ≡ mod ?
whatismod?
Commented by prof Abdo imad last updated on 19/Feb/18
x≡y [n] means ∃k∈Z /x−y=kn  or n divide x−y.
xy[n]meanskZ/xy=knorndividexy.
Answered by MJS last updated on 16/Feb/18
I set n=51  N=2^(24n) −1  S=2^(3n) +2^((3n+1)/2) +1  T=2^(8n) −2^(4n) +1  then I made polynome divisions  N/T=2^(16n) +2^(12n) −2^(4n) −1  this is integer for n∈N  N/S=2^(21n) −2^((39n+1)/2) +2^(18n) −2^(15n) +2^((27n+1)/2) −2^(12n) +2^(9n) −2^((15n+1)/2) +2^(6n) −2^(3n) +2^((3n+1)/2) −1  this is surely integer for n=2k−1; k∈N  51=2∙26−1  therefore answer A is correct S∣N ∧ T∣N
Isetn=51N=224n1S=23n+23n+12+1T=28n24n+1thenImadepolynomedivisionsN/T=216n+212n24n1thisisintegerfornNN/S=221n239n+12+218n215n+227n+12212n+29n215n+12+26n23n+23n+121thisissurelyintegerforn=2k1;kN51=2261thereforeanswerAiscorrectSNTN
Commented by rahul 19 last updated on 17/Feb/18
little tricky sol. as it is tough to set n=51.
littletrickysol.asitistoughtosetn=51.
Commented by MJS last updated on 17/Feb/18
the polynome division with the  original numbers is more  complicated
thepolynomedivisionwiththeoriginalnumbersismorecomplicated
Commented by Rasheed.Sindhi last updated on 17/Feb/18
To rahul,  It′s not so much tough to set 51  51 is GCD of 1224,153,408 &204
Torahul,Itsnotsomuchtoughtoset5151isGCDof1224,153,408&204
Commented by rahul 19 last updated on 17/Feb/18
thank you sir .
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *