Menu Close

Let-n-2-for-x-0-1-let-consider-A-x-u-R-x-lt-u-n-1-Prove-that-if-a-b-0-1-a-b-A-a-A-b-2-Deduce-x-infA-x-n-




Question Number 81157 by ~blr237~ last updated on 09/Feb/20
Let n≥2 , for  x∈[0,1]  :   let  consider  A(x)={ u∈R_+ ^∗  \   x<u^n }   1)Prove  that if   a,b∈[0,1]          a≤b ⇔A(a)⊆A(b)     2)Deduce     x=[infA(x) ]^n
$${Let}\:{n}\geqslant\mathrm{2}\:,\:{for}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\::\:\:\:{let}\:\:{consider}\:\:{A}\left({x}\right)=\left\{\:{u}\in\mathbb{R}_{+} ^{\ast} \:\backslash\:\:\:{x}<{u}^{{n}} \right\}\: \\ $$$$\left.\mathrm{1}\right){Prove}\:\:{that}\:{if}\:\:\:{a},{b}\in\left[\mathrm{0},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:{a}\leqslant{b}\:\Leftrightarrow{A}\left({a}\right)\subseteq{A}\left({b}\right)\:\:\: \\ $$$$\left.\mathrm{2}\right){Deduce}\:\:\:\:\:{x}=\left[{infA}\left({x}\right)\:\right]^{{n}} \:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *