Menu Close

let-n-be-a-fixed-positive-integer-How-many-ways-are-there-to-write-n-as-a-sum-of-positive-integers-n-a-1-a-2-a-k-with-k-arbitary-positive-integer-and-a-1-a-2-a-k-a-1-1-for-example-wi




Question Number 26513 by gunawan last updated on 26/Dec/17
let n be a fixed positive integer. How many ways are there to write n as a sum of  positive integers,   n=a_1 +a_2 +...+a_k   with k arbitary positive integer and a_1 ≤a_2 ...≤a_k ≤a_1 +1. for example  with n=4, there are four ways : 4, 2+2, 1+1+2,1+1+1+1
$$\mathrm{let}\:{n}\:\mathrm{be}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{are}\:\mathrm{there}\:\mathrm{to}\:\mathrm{write}\:{n}\:\mathrm{as}\:\mathrm{a}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{positive}\:\mathrm{integers},\: \\ $$$${n}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{k}} \\ $$$$\mathrm{with}\:{k}\:\mathrm{arbitary}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{and}\:{a}_{\mathrm{1}} \leqslant{a}_{\mathrm{2}} …\leqslant{a}_{{k}} \leqslant{a}_{\mathrm{1}} +\mathrm{1}.\:\mathrm{for}\:\mathrm{example} \\ $$$$\mathrm{with}\:{n}=\mathrm{4},\:\mathrm{there}\:\mathrm{are}\:\mathrm{four}\:\mathrm{ways}\::\:\mathrm{4},\:\mathrm{2}+\mathrm{2},\:\mathrm{1}+\mathrm{1}+\mathrm{2},\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1} \\ $$
Commented by mrW1 last updated on 26/Dec/17
Partitions of interger n see: https://www.whitman.edu/mathematics/cgt_online/book/section03.03.html
Commented by gunawan last updated on 26/Dec/17
thank you very much
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *