Menu Close

Let-n-be-a-positive-integer-Then-x-2-1-is-a-factor-of-x-4-3-n-x-2-3-x-2-1-n-for-A-All-n-B-Odd-n-C-Even-n-D-n-3-E-None-of-these-options-




Question Number 31125 by Joel578 last updated on 02/Mar/18
Let n be a positive integer. Then x^2  + 1   is a factor of (x^4  + 3)^n  − [(x^2  + 3)(x^2  − 1)]^n   for ...  (A) All n  (B) Odd n  (C) Even n  (D) n ≥ 3  (E) None of these options
$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{Then}\:{x}^{\mathrm{2}} \:+\:\mathrm{1}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\left({x}^{\mathrm{4}} \:+\:\mathrm{3}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} \:+\:\mathrm{3}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$\mathrm{for}\:… \\ $$$$\left(\mathrm{A}\right)\:\mathrm{All}\:{n} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{Odd}\:{n} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{Even}\:{n} \\ $$$$\left(\mathrm{D}\right)\:{n}\:\geqslant\:\mathrm{3} \\ $$$$\left(\mathrm{E}\right)\:\mathrm{None}\:\mathrm{of}\:\mathrm{these}\:\mathrm{options} \\ $$
Commented by prof Abdo imad last updated on 04/Mar/18
if x^2  +1 divide p(x)=(x^4  +3)^(n ) ((x^2  +3)(x^2 −1))^n   we must have p(i)=0 and p(−i)=0 but  p(i)=4^n  −(2(−2))^n =4^n  −(−4)^n  but we look  that p(−i)=p(i)=0 ⇒n≡0[2] ⇒n even.
$${if}\:{x}^{\mathrm{2}} \:+\mathrm{1}\:{divide}\:{p}\left({x}\right)=\left({x}^{\mathrm{4}} \:+\mathrm{3}\right)^{{n}\:} \left(\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)\right)^{{n}} \\ $$$${we}\:{must}\:{have}\:{p}\left({i}\right)=\mathrm{0}\:{and}\:{p}\left(−{i}\right)=\mathrm{0}\:{but} \\ $$$${p}\left({i}\right)=\mathrm{4}^{{n}} \:−\left(\mathrm{2}\left(−\mathrm{2}\right)\right)^{{n}} =\mathrm{4}^{{n}} \:−\left(−\mathrm{4}\right)^{{n}} \:{but}\:{we}\:{look} \\ $$$${that}\:{p}\left(−{i}\right)={p}\left({i}\right)=\mathrm{0}\:\Rightarrow{n}\equiv\mathrm{0}\left[\mathrm{2}\right]\:\Rightarrow{n}\:{even}. \\ $$
Answered by supungamage001 last updated on 03/Mar/18
(c)even
$$\left({c}\right){even} \\ $$$$ \\ $$
Answered by mrW2 last updated on 03/Mar/18
(x^4  + 3)^n  − [(x^2  + 3)(x^2  − 1)]^n   =(x^4 +2x^2  +1−2x^2  +2)^n  − [(x^2 +1 +2)(x^2  − 1)]^n   =[(x^2  +1)^2 −2(x^2  −1)]^n  −[(x^2 +1)(x^2 −1)+2(x^2  −1)]^n   =(...)+(−2)^n (x^2 −1)^n −(...)−2^n (x^2 −1)^n   =(...)+[(−2)^n −2^n ](x^2 −1)^n   (...)=terms with factor (x^2 +1)  we see that the last term is zero if n is even.  ⇒Answer C
$$\left({x}^{\mathrm{4}} \:+\:\mathrm{3}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} \:+\:\mathrm{3}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$=\left({x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}\right)^{{n}} \:−\:\left[\left({x}^{\mathrm{2}} +\mathrm{1}\:+\mathrm{2}\right)\left({x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\right]^{{n}} \\ $$$$=\left[\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)\right]^{{n}} \:−\left[\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{2}\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)\right]^{{n}} \\ $$$$=\left(…\right)+\left(−\mathrm{2}\right)^{{n}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} −\left(…\right)−\mathrm{2}^{{n}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} \\ $$$$=\left(…\right)+\left[\left(−\mathrm{2}\right)^{{n}} −\mathrm{2}^{{n}} \right]\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} \\ $$$$\left(…\right)={terms}\:{with}\:{factor}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$${we}\:{see}\:{that}\:{the}\:{last}\:{term}\:{is}\:{zero}\:{if}\:{n}\:{is}\:{even}. \\ $$$$\Rightarrow{Answer}\:{C} \\ $$
Commented by Joel578 last updated on 03/Mar/18
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *