Question Number 31125 by Joel578 last updated on 02/Mar/18
![Let n be a positive integer. Then x^2 + 1 is a factor of (x^4 + 3)^n − [(x^2 + 3)(x^2 − 1)]^n for ... (A) All n (B) Odd n (C) Even n (D) n ≥ 3 (E) None of these options](https://www.tinkutara.com/question/Q31125.png)
Commented by prof Abdo imad last updated on 04/Mar/18
![if x^2 +1 divide p(x)=(x^4 +3)^(n ) ((x^2 +3)(x^2 −1))^n we must have p(i)=0 and p(−i)=0 but p(i)=4^n −(2(−2))^n =4^n −(−4)^n but we look that p(−i)=p(i)=0 ⇒n≡0[2] ⇒n even.](https://www.tinkutara.com/question/Q31232.png)
Answered by supungamage001 last updated on 03/Mar/18

Answered by mrW2 last updated on 03/Mar/18
![(x^4 + 3)^n − [(x^2 + 3)(x^2 − 1)]^n =(x^4 +2x^2 +1−2x^2 +2)^n − [(x^2 +1 +2)(x^2 − 1)]^n =[(x^2 +1)^2 −2(x^2 −1)]^n −[(x^2 +1)(x^2 −1)+2(x^2 −1)]^n =(...)+(−2)^n (x^2 −1)^n −(...)−2^n (x^2 −1)^n =(...)+[(−2)^n −2^n ](x^2 −1)^n (...)=terms with factor (x^2 +1) we see that the last term is zero if n is even. ⇒Answer C](https://www.tinkutara.com/question/Q31169.png)
Commented by Joel578 last updated on 03/Mar/18
