Menu Close

Let-n-be-an-even-positive-integer-such-that-n-2-is-odd-and-let-0-1-n-1-be-the-complex-roots-of-unity-of-order-n-Prove-that-k-0-n-1-a-b-k-2-a-n-2-b-n-2-2




Question Number 21293 by Tinkutara last updated on 19/Sep/17
Let n be an even positive integer such  that (n/2) is odd and let α_0 , α_1 , ...., α_(n−1)  be  the complex roots of unity of order n.  Prove that Π_(k=0) ^(n−1) (a + bα_k ^2 ) = (a^(n/2)  + b^(n/2) )^2   for any complex numbers a and b.
Letnbeanevenpositiveintegersuchthatn2isoddandletα0,α1,.,αn1bethecomplexrootsofunityofordern.Provethatn1k=0(a+bαk2)=(an2+bn2)2foranycomplexnumbersaandb.
Answered by revenge last updated on 24/Sep/17
x^n −1=(x−α_0 )(x−α_1 )(x−α_2 )...(x−α_(n−1) )  Putting x=i(√(a/b)), we get  i^n ((a/b))^(n/2) −1=(i(√(a/b))−α_0 )(i(√(a/b))−α_1 )...(i(√(a/b))−α_(n−1) )  i^n a^(n/2) −b^(n/2) =(i(√a)−(√b)α_0 )(i(√a)−(√b)α_1 )...(i(√a)−(√b)α_(n−1) ) ...(1)  Similarly putting x=−i(√(a/b)), we get  (−i^n )a^(n/2) −b^(n/2) =(−i(√a)−(√b)α_0 )(−i(√a)−(√b)α_1 )...(−i(√a)−(√b)α_(n−1) )  i^n a^(n/2) −b^(n/2) =(i(√a)+(√b)α_0 )(i(√a)+(√b)α_1 )...(i(√a)+(√b)α_(n−1) ) ...(2)  Multiplying (1) and (2), we get  (i^n a^(n/2) −b^(n/2) )^2 =(a+bα_0 ^2 )(a+bα_1 ^2 )...(a+bα_(n−1) ^2 )=Π_(k=0) ^(n−1) (a+bα_k ^2 )  Since n=2m, where m is odd, ∴ i^(2m) =−1. So,  (a^(n/2) +b^(n/2) )^2 =Π_(k=0) ^(n−1) (a+bα_k ^2 )
xn1=(xα0)(xα1)(xα2)(xαn1)Puttingx=iab,wegetin(ab)n21=(iabα0)(iabα1)(iabαn1)inan2bn2=(iabα0)(iabα1)(iabαn1)(1)Similarlyputtingx=iab,weget(in)an2bn2=(iabα0)(iabα1)(iabαn1)inan2bn2=(ia+bα0)(ia+bα1)(ia+bαn1)(2)Multiplying(1)and(2),weget(inan2bn2)2=(a+bα02)(a+bα12)(a+bαn12)=n1k=0(a+bαk2)Sincen=2m,wheremisodd,i2m=1.So,(an2+bn2)2=n1k=0(a+bαk2)
Commented by Tinkutara last updated on 24/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *