let-n-from-N-and-A-n-cos-ax-x-2-x-1-n-dx-and-B-n-sin-ax-x-2-x-1-n-dx-find-the-value-of-A-n-and-B-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38727 by maxmathsup by imad last updated on 28/Jun/18 letnfromNandAn=∫−∞+∞cos(ax)(x2+x+1)ndxandBn=∫−∞+∞sin(ax)(x2+x+1)ndxfindthevalueofAnandBn. Commented by math khazana by abdo last updated on 01/Jul/18 wehaveAn+iBn=∫−∞+∞eiax(x2+x+1)ndx=WnWn=∫−∞+∞eiax((x+12)2+34)ndxchangementx+12=32tgiveWn=(43)n∫−∞+∞eia(32t−12)(t2+1)n32dt=32(43)ne−ia2∫−∞+∞ei32at(t2+1)ndtletλ=32aandfind∫−∞+∞eiλt(t2+1)n=Iλletφ(z)=eiλz(z2+1)nφ(z)=eiλz(z−i)n(z+i)n∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(n−1)!{(z−i)nφ(z)}(n−1)limz→i1(n−1)!{eiλz(z+i)−n}(n−1)but{eiλz(z+i)(−n)}(p)=∑k=0pCpk{(z+i)(−n)}(k)(eiλz)(p−k)…becontinued… Commented by math khazana by abdo last updated on 02/Jul/18 letfind((z+i)−n)(k)(z+i)−n}(1)=−n(z+i)−n−1{(z+i)−n}(2)=(−1)2n(n+1)(z+i)−n−2⇒{(z+i)−n}(k)=(−1)kn(n+1)…(n+k−1)(z+i)−n−kalsowehave(eiλz)(1)=iλeiλz(eiλz)(2)=(iλ)2eiλz⇒(eiλz)(p−k)=(iλ)p−keiλz⇒{eiλz(z+i)−n}(p)=∑k=0pCpk(−1)kn(n+1)…(n+k−1)(z+i)−n−k(iλ)p−keiλzp=n−1⇒{eiλz(z+i)−n}(n−1)=∑k=0n−1Cn−1k(−1)kn(n+1)…(2n−1)(z+i)−2n+1(iλ)n−1−keiλzRes(φ,i)=1(n−1)!∑k=0n−1Cn−1k(−1)kn(n+1)…(2n−1)(2i)−2n+1(iλ)n−1−ke−λ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-x-1-2-e-2x-developp-f-at-integr-serie-Next Next post: find-L-e-x-a-a-with-a-0-and-L-laplace-transfom- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.