Menu Close

let-n-from-N-and-A-n-cos-ax-x-2-x-1-n-dx-and-B-n-sin-ax-x-2-x-1-n-dx-find-the-value-of-A-n-and-B-n-




Question Number 38727 by maxmathsup by imad last updated on 28/Jun/18
let n from N  and  A_n = ∫_(−∞) ^(+∞)     ((cos(ax))/((x^2  +x+1)^n ))dx  and  B_n = ∫_(−∞) ^(+∞)    ((sin(ax))/((x^2  +x+1)^n ))dx  find the value of A_(n )   and B_n   .
letnfromNandAn=+cos(ax)(x2+x+1)ndxandBn=+sin(ax)(x2+x+1)ndxfindthevalueofAnandBn.
Commented by math khazana by abdo last updated on 01/Jul/18
we have A_n  +iB_n = ∫_(−∞) ^(+∞)   (e^(iax) /((x^2  +x+1)^n ))dx =W_n   W_n = ∫_(−∞) ^(+∞)     (e^(iax) /(((x+(1/2))^2 +(3/4))^n ))dx changement  x+(1/2)=((√3)/2) t  give   W_n = ((4/3))^n   ∫_(−∞) ^(+∞)   (e^(ia(((√3)/2)t−(1/2))) /((t^2  +1)^n )) ((√3)/2)dt  =((√3)/2)((4/3))^n  e^(−((ia)/2))   ∫_(−∞) ^(+∞)      (e^(i((√3)/2)at) /((t^2 +1)^n ))dt let λ =((√3)/2)a   and find ∫_(−∞) ^(+∞)    (e^(iλt) /((t^2  +1)^n )) =I_λ   let ϕ(z)= (e^(iλz) /((z^2  +1)^n ))  ϕ(z) = (e^(iλz) /((z−i)^n (z+i)^n ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)   (1/((n−1)!)) { (z−i)^n ϕ(z)}^((n−1))   lim_(z→i)   (1/((n−1)!))  { e^(iλz)  (z+i)^(−n) }^((n−1))     but  {e^(iλz)  (z+i)^((−n)) }^((p))  =Σ_(k=0) ^p  C_p ^k  {(z+i)^((−n)) }^((k))  (e^(iλz) )^((p−k))   ...be continued...
wehaveAn+iBn=+eiax(x2+x+1)ndx=WnWn=+eiax((x+12)2+34)ndxchangementx+12=32tgiveWn=(43)n+eia(32t12)(t2+1)n32dt=32(43)neia2+ei32at(t2+1)ndtletλ=32aandfind+eiλt(t2+1)n=Iλletφ(z)=eiλz(z2+1)nφ(z)=eiλz(zi)n(z+i)n+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)limzi1(n1)!{eiλz(z+i)n}(n1)but{eiλz(z+i)(n)}(p)=k=0pCpk{(z+i)(n)}(k)(eiλz)(pk)becontinued
Commented by math khazana by abdo last updated on 02/Jul/18
let find ((z +i)^(−n) )^((k))   (z+i)^(−n) }^((1)) =−n(z+i)^(−n−1)   {(z+i)^(−n) }^((2)) =(−1)^2 n(n+1) (z+i)^(−n−2)  ⇒  {(z+i)^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)   also we have (e^(iλz) )^((1)) =iλ e^(iλz)   (e^(iλz) )^((2)) =(iλ)^2  e^(iλz)  ⇒(e^(iλz) )^((p−k)) =(iλ)^(p−k)  e^(iλz)  ⇒  {e^(iλz) (z+i)^(−n) }^((p)) =Σ_(k=0) ^p  C_p ^k  (−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k) (iλ)^(p−k)  e^(iλz)   p=n−1 ⇒  {e^(iλz) (z+i)^(−n) }^((n−1)) =Σ_(k=0) ^(n−1)  C_(n−1) ^k (−1)^k  n(n+1)...(2n−1)(z+i)^(−2n+1) (iλ)^(n−1−k)  e^(iλz)   Res(ϕ,i) = (1/((n−1)!)) Σ_(k=0) ^(n−1)  C_(n−1) ^k (−1)^k n(n+1)...(2n−1)(2i)^(−2n+1) (iλ)^(n−1−k)  e^(−λ)
letfind((z+i)n)(k)(z+i)n}(1)=n(z+i)n1{(z+i)n}(2)=(1)2n(n+1)(z+i)n2{(z+i)n}(k)=(1)kn(n+1)(n+k1)(z+i)nkalsowehave(eiλz)(1)=iλeiλz(eiλz)(2)=(iλ)2eiλz(eiλz)(pk)=(iλ)pkeiλz{eiλz(z+i)n}(p)=k=0pCpk(1)kn(n+1)(n+k1)(z+i)nk(iλ)pkeiλzp=n1{eiλz(z+i)n}(n1)=k=0n1Cn1k(1)kn(n+1)(2n1)(z+i)2n+1(iλ)n1keiλzRes(φ,i)=1(n1)!k=0n1Cn1k(1)kn(n+1)(2n1)(2i)2n+1(iλ)n1keλ

Leave a Reply

Your email address will not be published. Required fields are marked *