Menu Close

let-n-N-I-n-f-x-the-n-th-antiderivate-of-f-x-with-I-0-f-x-find-the-formula-for-the-constants-a-n-b-n-of-I-n-ln-x-a-n-x-n-ln-x-b-n-x-n-




Question Number 173150 by Frix last updated on 07/Jul/22
let ∀n∈N: I_n (f(x))= the n^(th)  antiderivate  of f(x) with I_0 =f(x)  find the formula for the constants a_n , b_n  of  I_n (ln x)=a_n x^n ln x +b_n x^n
letnN:In(f(x))=thenthantiderivateoff(x)withI0=f(x)findtheformulafortheconstantsan,bnofIn(lnx)=anxnlnx+bnxn
Answered by aleks041103 last updated on 07/Jul/22
I_(n+1) (ln x)=∫I_n (ln x)dx=  =∫(a_n x^n ln x + b_n x^n )dx=  =a_n ∫x^n ln x dx + b_n ∫x^n dx  ∫x^n ln x dx=∫ln x d((x^(n+1) /(n+1)))=  =(x^(n+1) /(n+1))ln x−(1/(n+1))∫x^(n+1) (dx/x)=  =(1/(n+1))x^(n+1) ln x −(1/((n+1)^2 ))x^(n+1)   ⇒I_(n+1) (ln x)=a_n [(1/(n+1))x^(n+1) ln x −(1/((n+1)^2 ))x^(n+1) ]+(b_n /(n+1))x^(n+1) =  =((a_n /(n+1)))x^(n+1) ln x + ((b_n /(n+1))−(a_n /((n+1)^2 )))x^(n+1) =  =a_(n+1) x^(n+1) ln x + b_(n+1) x^(n+1)   ⇒ { ((a_(n+1) =(a_n /(n+1)))),((b_(n+1) =(b_n /(n+1))−(a_n /((n+1)^2 )))) :}  (1/a_(n+1) )=(n+1)(1/a_n )⇒(1/a_n )=const.n!⇒a_n =((const)/(n!))  I_0 (ln x)=ln x⇒a_0 =1⇒a_n =(1/(n!))  ⇒b_(n+1) =(b_n /(n+1))−(1/((n+1)!(n+1)))  (n+1)b_(n+1) −b_n =−(1/((n+1)!))  b_n =(c_n /(n!))  ⇒(n+1)(c_(n+1) /((n+1)!))−(c_n /(n!))=−(1/((n+1)!))=−(1/((n+1) n!))  ⇒c_(n+1) −c_n =−(1/(n+1))  ⇒c_n =const.−Σ_(i≥1) ^n (1/i)  c_0 =const.=0⇒c_n =−Σ_(i≥1) ^n (1/i)=−H_n   ⇒b_n =−(H_n /(n!))  ⇒ { ((a_n =(1/(n!)))),((b_n =−(H_n /(n!)) , H_(n≥1) =Σ_(k=1) ^n (1/k), H_0 =0)) :}
In+1(lnx)=In(lnx)dx==(anxnlnx+bnxn)dx==anxnlnxdx+bnxndxxnlnxdx=lnxd(xn+1n+1)==xn+1n+1lnx1n+1xn+1dxx==1n+1xn+1lnx1(n+1)2xn+1In+1(lnx)=an[1n+1xn+1lnx1(n+1)2xn+1]+bnn+1xn+1==(ann+1)xn+1lnx+(bnn+1an(n+1)2)xn+1==an+1xn+1lnx+bn+1xn+1{an+1=ann+1bn+1=bnn+1an(n+1)21an+1=(n+1)1an1an=const.n!an=constn!I0(lnx)=lnxa0=1an=1n!bn+1=bnn+11(n+1)!(n+1)(n+1)bn+1bn=1(n+1)!bn=cnn!(n+1)cn+1(n+1)!cnn!=1(n+1)!=1(n+1)n!cn+1cn=1n+1cn=const.ni11ic0=const.=0cn=ni11i=Hnbn=Hnn!{an=1n!bn=Hnn!,Hn1=nk=11k,H0=0
Commented by Frix last updated on 08/Jul/22
thank you!
thankyou!
Commented by Tawa11 last updated on 11/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *