let-n-N-I-n-f-x-the-n-th-antiderivate-of-f-x-with-I-0-f-x-find-the-formula-for-the-constants-a-n-b-n-of-I-n-ln-x-a-n-x-n-ln-x-b-n-x-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 173150 by Frix last updated on 07/Jul/22 let∀n∈N:In(f(x))=thenthantiderivateoff(x)withI0=f(x)findtheformulafortheconstantsan,bnofIn(lnx)=anxnlnx+bnxn Answered by aleks041103 last updated on 07/Jul/22 In+1(lnx)=∫In(lnx)dx==∫(anxnlnx+bnxn)dx==an∫xnlnxdx+bn∫xndx∫xnlnxdx=∫lnxd(xn+1n+1)==xn+1n+1lnx−1n+1∫xn+1dxx==1n+1xn+1lnx−1(n+1)2xn+1⇒In+1(lnx)=an[1n+1xn+1lnx−1(n+1)2xn+1]+bnn+1xn+1==(ann+1)xn+1lnx+(bnn+1−an(n+1)2)xn+1==an+1xn+1lnx+bn+1xn+1⇒{an+1=ann+1bn+1=bnn+1−an(n+1)21an+1=(n+1)1an⇒1an=const.n!⇒an=constn!I0(lnx)=lnx⇒a0=1⇒an=1n!⇒bn+1=bnn+1−1(n+1)!(n+1)(n+1)bn+1−bn=−1(n+1)!bn=cnn!⇒(n+1)cn+1(n+1)!−cnn!=−1(n+1)!=−1(n+1)n!⇒cn+1−cn=−1n+1⇒cn=const.−∑ni⩾11ic0=const.=0⇒cn=−∑ni⩾11i=−Hn⇒bn=−Hnn!⇒{an=1n!bn=−Hnn!,Hn⩾1=∑nk=11k,H0=0 Commented by Frix last updated on 08/Jul/22 thankyou! Commented by Tawa11 last updated on 11/Jul/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107609Next Next post: 0-dx-1-x-2-2x-x-2-1-pi-ln-3-2-3-solution-1-x-t-2-0-dt-1-t-4-2-0-1-dt-1-t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.