Menu Close

let-n-Z-shov-that-0-sin-x-n-ln-x-x-dx-pi-2n-2-where-is-the-Euler-Mascheroni-constan-




Question Number 157003 by MathSh last updated on 18/Oct/21
let  n∈Z^+   shov that  ∫_( 0) ^( ∞)  ((sin(x^(-n) )ln(x))/x) dx = ((π𝛄)/(2n^2 ))   where  𝛄  is the Euler-Mascheroni constan
letnZ+shovthat0sin(xn)ln(x)xdx=πγ2n2whereγistheEulerMascheroniconstan
Answered by mindispower last updated on 18/Oct/21
∫_0 ^∞ ((sin(x^n )ln(x))/x)dx=Δ  =∫_0 ^∞ ((sin(x^n )ln(x^n ))/(nx^n )).x^(n−1) dx=(1/n^2 )∫_0 ^∞ ((sin(x^n )ln(x^n ))/x^n )dx^n   =(1/n^2 )∫_0 ^∞ ((sin(t))/t)ln(t)  f(a)=∫_0 ^∞ sin(t)t^a dt=Im∫_0 ^∞ e^(it) t^a dt  =Im.∫_0 ^(i∞) e^(−t) (it)^a .idt  =Imi^(a+1) ∫_0 ^∞ t^a e^(−t) dt=sin(((a+1)/2)π)Γ(1+a)  Δ=(1/n^2 )f′(−1)=(π/(2n^2 ))lim_(a→0) (cos((a/2)π)Γ(a)+Γ′(a)a)  Γ′(a)=Ψ(a)Γ(a)  =lim_(a→0) (π/(2n^2 ))(Γ(a)+Ψ(a)Γ(a)a)  Ψ(1+a)=Ψ(a)+(1/a)⇒aΨ(a)=aΨ(1+a)−1  =lim_(a→0) (π/(2n^2 ))(Γ(a)+aΨ(1+a)Γ(a)−Γ(a))  =lim_(a→0) .(π/(2n^2 ))(Γ(1+a)Ψ(1+a))=(π/(2n^2 ))Ψ(1)=((πγ)/(2n^2 ))
0sin(xn)ln(x)xdx=Δ=0sin(xn)ln(xn)nxn.xn1dx=1n20sin(xn)ln(xn)xndxn=1n20sin(t)tln(t)f(a)=0sin(t)tadt=Im0eittadt=Im.0iet(it)a.idt=Imia+10taetdt=sin(a+12π)Γ(1+a)Δ=1n2f(1)=π2n2lima0(cos(a2π)Γ(a)+Γ(a)a)Γ(a)=Ψ(a)Γ(a)=lima0π2n2(Γ(a)+Ψ(a)Γ(a)a)Ψ(1+a)=Ψ(a)+1aaΨ(a)=aΨ(1+a)1=lima0π2n2(Γ(a)+aΨ(1+a)Γ(a)Γ(a))=lima0.π2n2(Γ(1+a)Ψ(1+a))=π2n2Ψ(1)=πγ2n2
Commented by MathSh last updated on 18/Oct/21
Perfect dear Ser, thank you
PerfectdearSer,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *