Menu Close

Let-P-3-6-7-89-and-F-is-fractional-part-of-P-Then-find-the-remainder-when-PF-PF-2-PF-3-is-divided-by-31-




Question Number 124130 by soumyasaha last updated on 01/Dec/20
    Let  P = ( 3(√6) + 7 )^(89)  and   F is fractional    part of  P.    Then find the remainder when     (PF) + (PF)^2  + (PF)^3  is divided by 31.
LetP=(36+7)89andFisfractionalpartofP.Thenfindtheremainderwhen(PF)+(PF)2+(PF)3isdividedby31.
Answered by MJS_new last updated on 01/Dec/20
3(√6)≈7.34847 ⇒ the fractional part of 7+3(√6)  is −7+3(√6)  the fractional part of (7+3(√6))^(2n+1)  is (−7+3(√6))^(2n+1)   (fractional part of (7+3(√6))^(2n)  is 1−(−7+3(√6))^(2n) )  ⇒  PF=(7+3(√6))^(89) (−7+3(√6))^(89) =5^(89)   ⇒  (PF)+(PF)^2 +(PF)^3 =5^(267) +5^(178) +5^(89)   the remainders of 5^n /31 are  { ((1; n=3k)),((5; n=3k+1)),((25; n=3k+2)) :}  89=3×29+2  178=3×59+1  267=3×89  ⇒ remainder is 1+5+25=31≡0
367.34847thefractionalpartof7+36is7+36thefractionalpartof(7+36)2n+1is(7+36)2n+1(fractionalpartof(7+36)2nis1(7+36)2n)PF=(7+36)89(7+36)89=589(PF)+(PF)2+(PF)3=5267+5178+589theremaindersof5n/31are{1;n=3k5;n=3k+125;n=3k+289=3×29+2178=3×59+1267=3×89remainderis1+5+25=310
Commented by soumyasaha last updated on 01/Dec/20
Thanks Sir
ThanksSir

Leave a Reply

Your email address will not be published. Required fields are marked *