Menu Close

let-p-a-prime-number-s-t-p-7-and-a-333-3-p-1-times-Show-that-11-a-




Question Number 111208 by Aziztisffola last updated on 02/Sep/20
 let p a prime number s.t p≥7 and                     a=333......3_(p−1 times)    Show that 11∣a.
letpaprimenumbers.tp7anda=3333p1timesShowthat11a.
Commented by mr W last updated on 02/Sep/20
p doesn′t need to be prime, p can be  any odd number p≥3.
pdoesntneedtobeprime,pcanbeanyoddnumberp3.
Commented by mr W last updated on 02/Sep/20
p=odd number, say p=2n+1 with  n≥1.  a=3333..33_(2n times) =3×1111..11_(2n times)   =3×(11+1100+110000+...+1100..00)  =3×(1+100+10000+...+100..00)×11  ⇒11∣a
p=oddnumber,sayp=2n+1withn1.a=3333..332ntimes=3×1111..112ntimes=3×(11+1100+110000++1100..00)=3×(1+100+10000++100..00)×1111a
Commented by Aziztisffola last updated on 02/Sep/20
yes sir thank you.
yessirthankyou.
Answered by Aziztisffola last updated on 02/Sep/20
My answer    a= 3+3×10+...+3×10^p      =3(1+10+10^2 +...+10^p )     =3(((10^(p+1) −1)/9))=((10^(p+1) −1)/3)  ⇒ 3a=10^(p+1) −1   10≡−1[11] ⇒10^(p+1) ≡1[11]  (p+1 is even)  ⇒ 10^(p+1) −1≡0[11]  ⇒ 3a≡0[11] ⇒11∣3a  ⇒^(3∧11=1)   11∣a
Myanswera=3+3×10++3×10p=3(1+10+102++10p)=3(10p+119)=10p+1133a=10p+11101[11]10p+11[11](p+1iseven)10p+110[11]3a0[11]113a311=111a

Leave a Reply

Your email address will not be published. Required fields are marked *