Menu Close

Let-p-and-q-are-the-roots-of-x-2-2mx-5n-0-and-m-and-n-are-the-roots-of-x-2-2px-5q-0-If-p-q-m-n-then-the-value-of-p-q-m-n-is-




Question Number 31320 by Joel578 last updated on 06/Mar/18
Let p and q are the roots of   x^2  − 2mx − 5n = 0  and m and n are the roots of  x^2  − 2px − 5q = 0  If p ≠ q ≠ m ≠ n, then the value of  p + q + m + n is ...
Letpandqaretherootsofx22mx5n=0andmandnaretherootsofx22px5q=0Ifpqmn,thenthevalueofp+q+m+nis
Answered by MJS last updated on 06/Mar/18
(x−p)(x−q)=x^2 −2mx−5n  x^2 −(p+q)x+pq=x^2 −2mx−5n  p+q=2m; pq=−5n  m=((p+q)/2); n=−((pq)/5)  (x−m)(x−n)=x^2 −2px−5q  x^2 −(m+n)x+mn=x^2 −2px−5q  m+n=2p; mn=−5q  ((p+q)/2)−((pq)/5)=2p⇒p=((5q)/(15+2q))  ((p+q)/2)×((pq)/5)=5q⇒q(p^2 +pq−50)=0⇒  ⇒q_1 =0; p_1 =0: not valid (p≠q)  p^2 +pq−50=0 with p=((5q)/(15+2q))  q^3 −10q^2 −300q−1225=0  try all ±q with q∣1225  ⇒q_2 =−5; p_2 =−5; not valid (p≠q)  q^2 −15q−225=0  q_3 =((15)/2)(1−(√5)); p_3 =(5/2)(3+(√5))  m_3 =(5/2)(3−(√5)); n_3 =((15)/2)(1+(√5))  q_4 =n_3 ; p_4 =m_3   m+n+p+q=30
(xp)(xq)=x22mx5nx2(p+q)x+pq=x22mx5np+q=2m;pq=5nm=p+q2;n=pq5(xm)(xn)=x22px5qx2(m+n)x+mn=x22px5qm+n=2p;mn=5qp+q2pq5=2pp=5q15+2qp+q2×pq5=5qq(p2+pq50)=0q1=0;p1=0:notvalid(pq)p2+pq50=0withp=5q15+2qq310q2300q1225=0tryall±qwithq1225q2=5;p2=5;notvalid(pq)q215q225=0q3=152(15);p3=52(3+5)m3=52(35);n3=152(1+5)q4=n3;p4=m3m+n+p+q=30
Commented by Joel578 last updated on 06/Mar/18
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *