Question Number 42196 by rahul 19 last updated on 20/Aug/18
$$\mathrm{Let}\:\mathrm{P}\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{ABC}\:\mathrm{and}\:\mathrm{AP},\mathrm{BP},\mathrm{CP}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{BC}, \\ $$$$\mathrm{CA},\mathrm{AB}\:\mathrm{in}\:\mathrm{D},\mathrm{E},\mathrm{F}\:\mathrm{respectively}.\:\mathrm{Show} \\ $$$$\mathrm{that}\:\frac{\mathrm{AP}}{\mathrm{PD}}=\:\frac{\mathrm{AF}}{\mathrm{FB}}\:+\:\frac{\mathrm{AE}}{\mathrm{EC}}\:. \\ $$
Commented by rahul 19 last updated on 20/Aug/18
$$\mathrm{Again}\:\mathrm{do}\:\mathrm{by}\:\mathrm{concept}\:\mathrm{of}\:\mathrm{vectors}\:\mathrm{only}! \\ $$
Commented by ajfour last updated on 20/Aug/18
Commented by ajfour last updated on 21/Aug/18