Menu Close

Let-P-be-an-interior-point-of-a-triangle-ABC-and-AP-BP-CP-meet-the-sides-BC-CA-AB-in-D-E-F-respectively-Show-that-AP-PD-AF-FB-AE-EC-




Question Number 42196 by rahul 19 last updated on 20/Aug/18
Let P be an interior point of a triangle  ABC and AP,BP,CP meet the sides BC,  CA,AB in D,E,F respectively. Show  that ((AP)/(PD))= ((AF)/(FB)) + ((AE)/(EC)) .
$$\mathrm{Let}\:\mathrm{P}\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{ABC}\:\mathrm{and}\:\mathrm{AP},\mathrm{BP},\mathrm{CP}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{BC}, \\ $$$$\mathrm{CA},\mathrm{AB}\:\mathrm{in}\:\mathrm{D},\mathrm{E},\mathrm{F}\:\mathrm{respectively}.\:\mathrm{Show} \\ $$$$\mathrm{that}\:\frac{\mathrm{AP}}{\mathrm{PD}}=\:\frac{\mathrm{AF}}{\mathrm{FB}}\:+\:\frac{\mathrm{AE}}{\mathrm{EC}}\:. \\ $$
Commented by rahul 19 last updated on 20/Aug/18
Again do by concept of vectors only!
$$\mathrm{Again}\:\mathrm{do}\:\mathrm{by}\:\mathrm{concept}\:\mathrm{of}\:\mathrm{vectors}\:\mathrm{only}! \\ $$
Commented by ajfour last updated on 20/Aug/18
Commented by ajfour last updated on 21/Aug/18
to prove  ((AF)/(FB)) +((AE)/(EC)) = ((AP)/(PD))  let  AF = μb^�   ; AE=λc^�           AP = ε AD  ⇒ To prove :  (μ/(1−μ))+(λ/(1−λ))=(ε/(1−ε))  p^�  = b^� +l(λc^� −b^� )      =  c^� +m(μb^� −c^� )     = ε[b^� +ρ(c^� −b^� )]  ⇒  1−l = μm = ε−ερ    ...(i)  &     λl = 1−m = ερ       ....(ii)  ⇒  1−((ερ)/λ)=μ(1−ερ)=ε−ερ  ⇒ ερ = ((1−μ)/((1/λ)−μ)) = ((1−ε)/((1/λ)−1))  ⇒ (1/λ)−1−(μ/λ)+μ = (1/λ)−μ−(ε/λ)+εμ  ⇒  λ+μ−λμ = λμ+ε−λεμ  ⇒  ε = ((λ+μ−2λμ)/(1−λμ))          (ε/(1−ε)) = ((λ+μ−2λμ)/(1−λ−μ+λμ))                   =((μ(1−λ)+λ(1−μ))/((1−λ)(1−μ)))  ⇒  (𝛆/(1−𝛆)) = (𝛍/(1−𝛍))+(𝛌/(1−𝛌)) .
$${to}\:{prove}\:\:\frac{{AF}}{{FB}}\:+\frac{{AE}}{{EC}}\:=\:\frac{{AP}}{{PD}} \\ $$$${let}\:\:{AF}\:=\:\mu\bar {{b}}\:\:;\:{AE}=\lambda\bar {{c}} \\ $$$$\:\:\:\:\:\:\:\:{AP}\:=\:\epsilon\:{AD} \\ $$$$\Rightarrow\:{To}\:{prove}\::\:\:\frac{\mu}{\mathrm{1}−\mu}+\frac{\lambda}{\mathrm{1}−\lambda}=\frac{\epsilon}{\mathrm{1}−\epsilon} \\ $$$$\bar {{p}}\:=\:\bar {{b}}+{l}\left(\lambda\bar {{c}}−\bar {{b}}\right) \\ $$$$\:\:\:\:=\:\:\bar {{c}}+{m}\left(\mu\bar {{b}}−\bar {{c}}\right) \\ $$$$\:\:\:=\:\epsilon\left[\bar {{b}}+\rho\left(\bar {{c}}−\bar {{b}}\right)\right] \\ $$$$\Rightarrow\:\:\mathrm{1}−{l}\:=\:\mu{m}\:=\:\epsilon−\epsilon\rho\:\:\:\:…\left({i}\right) \\ $$$$\&\:\:\:\:\:\lambda{l}\:=\:\mathrm{1}−{m}\:=\:\epsilon\rho\:\:\:\:\:\:\:….\left({ii}\right) \\ $$$$\Rightarrow\:\:\mathrm{1}−\frac{\epsilon\rho}{\lambda}=\mu\left(\mathrm{1}−\epsilon\rho\right)=\epsilon−\epsilon\rho \\ $$$$\Rightarrow\:\epsilon\rho\:=\:\frac{\mathrm{1}−\mu}{\frac{\mathrm{1}}{\lambda}−\mu}\:=\:\frac{\mathrm{1}−\epsilon}{\frac{\mathrm{1}}{\lambda}−\mathrm{1}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\lambda}−\mathrm{1}−\frac{\mu}{\lambda}+\mu\:=\:\frac{\mathrm{1}}{\lambda}−\mu−\frac{\epsilon}{\lambda}+\epsilon\mu \\ $$$$\Rightarrow\:\:\lambda+\mu−\lambda\mu\:=\:\lambda\mu+\epsilon−\lambda\epsilon\mu \\ $$$$\Rightarrow\:\:\epsilon\:=\:\frac{\lambda+\mu−\mathrm{2}\lambda\mu}{\mathrm{1}−\lambda\mu} \\ $$$$\:\:\:\:\:\:\:\:\frac{\epsilon}{\mathrm{1}−\epsilon}\:=\:\frac{\lambda+\mu−\mathrm{2}\lambda\mu}{\mathrm{1}−\lambda−\mu+\lambda\mu} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mu\left(\mathrm{1}−\lambda\right)+\lambda\left(\mathrm{1}−\mu\right)}{\left(\mathrm{1}−\lambda\right)\left(\mathrm{1}−\mu\right)} \\ $$$$\Rightarrow\:\:\frac{\boldsymbol{\epsilon}}{\mathrm{1}−\boldsymbol{\epsilon}}\:=\:\frac{\boldsymbol{\mu}}{\mathrm{1}−\boldsymbol{\mu}}+\frac{\boldsymbol{\lambda}}{\mathrm{1}−\boldsymbol{\lambda}}\:. \\ $$
Commented by rahul 19 last updated on 21/Aug/18
thank you sir!���� I will see later .

Leave a Reply

Your email address will not be published. Required fields are marked *