Menu Close

Let-P-be-an-interior-point-of-a-triangle-ABC-and-AP-BP-CP-meet-the-sides-BC-CA-AB-in-D-E-F-respectively-Show-that-AP-PD-AF-FB-AE-EC-




Question Number 42196 by rahul 19 last updated on 20/Aug/18
Let P be an interior point of a triangle  ABC and AP,BP,CP meet the sides BC,  CA,AB in D,E,F respectively. Show  that ((AP)/(PD))= ((AF)/(FB)) + ((AE)/(EC)) .
LetPbeaninteriorpointofatriangleABCandAP,BP,CPmeetthesidesBC,CA,ABinD,E,Frespectively.ShowthatAPPD=AFFB+AEEC.
Commented by rahul 19 last updated on 20/Aug/18
Again do by concept of vectors only!
Againdobyconceptofvectorsonly!
Commented by ajfour last updated on 20/Aug/18
Commented by ajfour last updated on 21/Aug/18
to prove  ((AF)/(FB)) +((AE)/(EC)) = ((AP)/(PD))  let  AF = μb^�   ; AE=λc^�           AP = ε AD  ⇒ To prove :  (μ/(1−μ))+(λ/(1−λ))=(ε/(1−ε))  p^�  = b^� +l(λc^� −b^� )      =  c^� +m(μb^� −c^� )     = ε[b^� +ρ(c^� −b^� )]  ⇒  1−l = μm = ε−ερ    ...(i)  &     λl = 1−m = ερ       ....(ii)  ⇒  1−((ερ)/λ)=μ(1−ερ)=ε−ερ  ⇒ ερ = ((1−μ)/((1/λ)−μ)) = ((1−ε)/((1/λ)−1))  ⇒ (1/λ)−1−(μ/λ)+μ = (1/λ)−μ−(ε/λ)+εμ  ⇒  λ+μ−λμ = λμ+ε−λεμ  ⇒  ε = ((λ+μ−2λμ)/(1−λμ))          (ε/(1−ε)) = ((λ+μ−2λμ)/(1−λ−μ+λμ))                   =((μ(1−λ)+λ(1−μ))/((1−λ)(1−μ)))  ⇒  (𝛆/(1−𝛆)) = (𝛍/(1−𝛍))+(𝛌/(1−𝛌)) .
toproveAFFB+AEEC=APPDletAF=μb¯;AE=λc¯AP=ϵADToprove:μ1μ+λ1λ=ϵ1ϵp¯=b¯+l(λc¯b¯)=c¯+m(μb¯c¯)=ϵ[b¯+ρ(c¯b¯)]1l=μm=ϵϵρ(i)&λl=1m=ϵρ.(ii)1ϵρλ=μ(1ϵρ)=ϵϵρϵρ=1μ1λμ=1ϵ1λ11λ1μλ+μ=1λμϵλ+ϵμλ+μλμ=λμ+ϵλϵμϵ=λ+μ2λμ1λμϵ1ϵ=λ+μ2λμ1λμ+λμ=μ(1λ)+λ(1μ)(1λ)(1μ)\boldsymbolϵ1\boldsymbolϵ=\boldsymbolμ1\boldsymbolμ+\boldsymbolλ1\boldsymbolλ.
Commented by rahul 19 last updated on 21/Aug/18
thank you sir!���� I will see later .

Leave a Reply

Your email address will not be published. Required fields are marked *