Menu Close

Let-P-be-an-interior-point-of-a-triangle-ABC-whose-sidelengths-are-26-65-78-The-line-through-P-parallel-to-BC-meets-AB-in-K-and-AC-in-L-The-line-through-P-parallel-to-CA-meets-BC-in-M-and-BA-in-N-




Question Number 21228 by Tinkutara last updated on 16/Sep/17
Let P be an interior point of a triangle  ABC whose sidelengths are 26, 65, 78.  The line through P parallel to BC meets  AB in K and AC in L. The line through  P parallel to CA meets BC in M and BA  in N. The line through P parallel to AB  meets CA in S and CB in T. If KL, MN,  ST, are of equal lengths, find this  common length.
$$\mathrm{Let}\:{P}\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$${ABC}\:\mathrm{whose}\:\mathrm{sidelengths}\:\mathrm{are}\:\mathrm{26},\:\mathrm{65},\:\mathrm{78}. \\ $$$$\mathrm{The}\:\mathrm{line}\:\mathrm{through}\:{P}\:\mathrm{parallel}\:\mathrm{to}\:{BC}\:\mathrm{meets} \\ $$$${AB}\:\mathrm{in}\:{K}\:\mathrm{and}\:{AC}\:\mathrm{in}\:{L}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{through} \\ $$$${P}\:\mathrm{parallel}\:\mathrm{to}\:{CA}\:\mathrm{meets}\:{BC}\:\mathrm{in}\:{M}\:\mathrm{and}\:{BA} \\ $$$$\mathrm{in}\:{N}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{through}\:{P}\:\mathrm{parallel}\:\mathrm{to}\:{AB} \\ $$$$\mathrm{meets}\:{CA}\:\mathrm{in}\:{S}\:\mathrm{and}\:{CB}\:\mathrm{in}\:{T}.\:\mathrm{If}\:{KL},\:{MN}, \\ $$$${ST},\:\mathrm{are}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{lengths},\:\mathrm{find}\:\mathrm{this} \\ $$$$\mathrm{common}\:\mathrm{length}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *