Menu Close

Let-P-be-point-on-the-graph-of-a-straight-line-y-2x-3-and-Q-be-a-point-on-the-graph-of-a-parabola-y-x-2-x-1-Find-the-shortest-distance-between-P-and-Q-




Question Number 126605 by bramlexs22 last updated on 22/Dec/20
 Let P be point on the graph   of a straight line y=2x−3 and Q  be a point on the graph of a parabola  y=x^2 +x+1 .Find the shortest   distance between P and Q .
$$\:{Let}\:{P}\:{be}\:{point}\:{on}\:{the}\:{graph}\: \\ $$$${of}\:{a}\:{straight}\:{line}\:{y}=\mathrm{2}{x}−\mathrm{3}\:{and}\:{Q} \\ $$$${be}\:{a}\:{point}\:{on}\:{the}\:{graph}\:{of}\:{a}\:{parabola} \\ $$$${y}={x}^{\mathrm{2}} +{x}+\mathrm{1}\:.{Find}\:{the}\:{shortest}\: \\ $$$${distance}\:{between}\:{P}\:{and}\:{Q}\:. \\ $$
Answered by liberty last updated on 22/Dec/20
let y=2x+p is tangent line at curve   y=x^2 +x+1 ⇒ we get 2x+1=2 ; x=(1/2)  the point Q ((1/2), (7/4)) and p=(3/4)  thus ∣PQ∣_(min)  = ∣ (((3/4)−(−3))/( (√5)))∣ = ((15)/(4(√5))) = (3/4)(√5)
$${let}\:{y}=\mathrm{2}{x}+{p}\:{is}\:{tangent}\:{line}\:{at}\:{curve}\: \\ $$$${y}={x}^{\mathrm{2}} +{x}+\mathrm{1}\:\Rightarrow\:{we}\:{get}\:\mathrm{2}{x}+\mathrm{1}=\mathrm{2}\:;\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${the}\:{point}\:{Q}\:\left(\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{7}}{\mathrm{4}}\right)\:{and}\:{p}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${thus}\:\mid{PQ}\mid_{{min}} \:=\:\mid\:\frac{\frac{\mathrm{3}}{\mathrm{4}}−\left(−\mathrm{3}\right)}{\:\sqrt{\mathrm{5}}}\mid\:=\:\frac{\mathrm{15}}{\mathrm{4}\sqrt{\mathrm{5}}}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *