Menu Close

let-p-gt-1-calculate-0-2pi-dt-p-cost-2-




Question Number 38113 by maxmathsup by imad last updated on 21/Jun/18
let p>1 calculate  ∫_0 ^(2π)       (dt/((p +cost)^2 ))
letp>1calculate02πdt(p+cost)2
Commented by math khazana by abdo last updated on 08/Jul/18
let put A_p = ∫_0 ^(2π)      (dt/((p +cost)^2 ))  changement  e^(it)  =z give  A_p = ∫_(∣z∣=1)     (1/((p +((z+z^(−1) )/2))^2 )) (dz/(iz))  =∫_(∣z∣=1)       ((−4i dz)/(z(2p +z +z^(−1) )^2 ))  = ∫_(∣z∣=1)     ((−4idz)/(z( 2p +z +(1/z))^2 ))  =∫_(∣z∣=1)      ((−4izdz)/((2pz +z^2  +1)^2 ))  =∫_(∣z∣=1)      ((−4izdz)/((z^2  +2pz +1)^2 ))  let  ϕ(z) = ((−4iz)/((z^2  +2pz +1)^2 )) poles of ϕ?  roots of z^2  +2pz +1  Δ^′  =p^2 −1  >0 ⇒ z_1 =−p +(√(p^2  −1))  z_2 =−p −(√(p^2  −1))  ϕ(z)   =  ((−4iz)/((z−z_1 )^2 (z−z_2 )^2 ))  ∣z_1 ∣ −1 = p−(√(p^2 −1))−1 =p−1 −(√(p^2  −1))  (p−1)^2 −(p^2 −1) =p^2  −2p +1−p^2  +1  =−2p+2 =−2(p−1)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣>1 ⇒ ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )
letputAp=02πdt(p+cost)2changementeit=zgiveAp=z∣=11(p+z+z12)2dziz=z∣=14idzz(2p+z+z1)2=z∣=14idzz(2p+z+1z)2=z∣=14izdz(2pz+z2+1)2=z∣=14izdz(z2+2pz+1)2letφ(z)=4iz(z2+2pz+1)2polesofφ?rootsofz2+2pz+1Δ=p21>0z1=p+p21z2=pp21φ(z)=4iz(zz1)2(zz2)2z11=pp211=p1p21(p1)2(p21)=p22p+1p2+1=2p+2=2(p1)<0⇒∣z1∣<1z2∣>1z∣=1φ(z)dz=2iπRes(φ,z1)
Commented by math khazana by abdo last updated on 08/Jul/18
Res(ϕ,z_1 ) =lim_(z→z_1 )   ?(1/((2−1)!)) {(z−z_1 )^2  ϕ(z)}^((1))   =lim_(z→z_1 )    { ((−4iz)/((z−z_2 )^2 ))}^((1))   =−4i lim_(z→z_1 ) (((z−z_2 )^2  −2(z−z_2 )z)/((z−z_2 )^4 ))  =−4i lim_(z→z_1 )  (((z−z_2 ) −2z)/((z−z_2 )^3 ))  =4i lim_(z→z_1 )   ((z +z_2 )/((z−z_2 )^2 ))  =4i ((z_1  +z_2 )/((z_(1 ) −z_2 )^2 )) =4i  ((−2p)/((2(√(p^2 −1)))^2 )) = ((−2ip)/((p^2  −1)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ  (((−2ip)/(p^2 −1)))= ((4pπ)/(p^2 −1)) ⇒  A_p = ((4pπ)/(p^2  −1)) .
Res(φ,z1)=limzz1?1(21)!{(zz1)2φ(z)}(1)=limzz1{4iz(zz2)2}(1)=4ilimzz1(zz2)22(zz2)z(zz2)4=4ilimzz1(zz2)2z(zz2)3=4ilimzz1z+z2(zz2)2=4iz1+z2(z1z2)2=4i2p(2p21)2=2ip(p21)+φ(z)dz=2iπ(2ipp21)=4pπp21Ap=4pπp21.

Leave a Reply

Your email address will not be published. Required fields are marked *