Menu Close

let-p-K-n-x-snd-A-and-H-two-rlements-of-K-x-1-prove-that-p-A-x-H-x-k-0-n-p-k-A-x-k-H-x-k-2-find-the-condition-that-p-A-x-H-x-is-divided-by-H-x-0-3-if-p-x-c-prove-t




Question Number 50363 by prof Abdo imad last updated on 16/Dec/18
let p ∈K_n [x] snd A and H two rlements of K[x]  1) prove that p(A(x)+H(x))=Σ_(k=0) ^n ((p^((k)) (A(x)))/(k!)).(H(x))^k   2)find the condition that p(A(x)+H(x))is  divided by H(x)≠0  3) if p(x)≠c prove  that p(p(x))−x is divided  by p(x)−x.
$${let}\:{p}\:\in{K}_{{n}} \left[{x}\right]\:{snd}\:{A}\:{and}\:{H}\:{two}\:{rlements}\:{of}\:{K}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \frac{{p}^{\left({k}\right)} \left({A}\left({x}\right)\right)}{{k}!}.\left({H}\left({x}\right)\right)^{{k}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{condition}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right){is} \\ $$$${divided}\:{by}\:{H}\left({x}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{if}\:{p}\left({x}\right)\neq{c}\:{prove}\:\:{that}\:{p}\left({p}\left({x}\right)\right)−{x}\:{is}\:{divided} \\ $$$${by}\:{p}\left({x}\right)−{x}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *