Menu Close

Let-P-n-n-1-n-3-n-5-n-7-n-9-What-is-the-largest-integer-that-is-a-divisor-of-P-n-for-all-positive-even-integers-n-




Question Number 19403 by Tinkutara last updated on 10/Aug/17
Let P(n) = (n + 1)(n + 3)(n + 5)(n + 7)(n + 9).  What is the largest integer that is a  divisor of P(n) for all positive even  integers n?
LetP(n)=(n+1)(n+3)(n+5)(n+7)(n+9).WhatisthelargestintegerthatisadivisorofP(n)forallpositiveevenintegersn?
Commented by RasheedSindhi last updated on 12/Aug/17
15
15
Answered by RasheedSindhi last updated on 12/Aug/17
P(n)=(n+1)(n+3)(n+5)(n+7)(n+9)  n∈E^+ ;Let n=2m,m∈N  P(2m)=(2m+1)(2m+3)(2m+5)(2m+7)(2m+9)  m=3k∣m=3k+1∣m=3k+2  C-0 : m=3k⇒  P(n)=P(2m)=P(2.3k)  =(6k+1)(6k+3)(6k+5)(6k+7)(6k+9)    =3(6k+1)(2k+1)(6k+5)(6k+7)(6k+9)  C-1 : m=3k+1⇒  P(n)=(6k+3)(6k+5)(6k+7)(6k+9)(6k+11)    =9(2k+1)(6k+5)(6k+7)(2k+3)(6k+11)  C-2 : m=3k+2⇒  P(n)=(6k+5)(6k+7)(6k+9)(6k+11)(6k+13)    =3(6k+5)(6k+7)(2k+3)(6k+11)(6k+13)   In all the three cases:                   3 ∣ P(n)  Similarly we can prove that                   5 ∣ P(n)  Also can be verified from P(10)  that 3 and 5 can divide P(n) once only.  P(10)=11.13.15.17.19                =11.13.3.5.17.19  From the following it is proved  that  there isn′t any divisor of P(n)  other than 3 & 5  P(2)=3.5.7.9.11  P(10)=11.13.15.17.19  P(12)=13.15.17.19.21  Hence the largest divisor is  3×5=15
P(n)=(n+1)(n+3)(n+5)(n+7)(n+9)nE+;Letn=2m,mNP(2m)=(2m+1)(2m+3)(2m+5)(2m+7)(2m+9)m=3km=3k+1m=3k+2C0:m=3kP(n)=P(2m)=P(2.3k)=(6k+1)(6k+3)(6k+5)(6k+7)(6k+9)=3(6k+1)(2k+1)(6k+5)(6k+7)(6k+9)C1:m=3k+1P(n)=(6k+3)(6k+5)(6k+7)(6k+9)(6k+11)=9(2k+1)(6k+5)(6k+7)(2k+3)(6k+11)C2:m=3k+2P(n)=(6k+5)(6k+7)(6k+9)(6k+11)(6k+13)=3(6k+5)(6k+7)(2k+3)(6k+11)(6k+13)Inallthethreecases:3P(n)Similarlywecanprovethat5P(n)AlsocanbeverifiedfromP(10)that3and5candivideP(n)onceonly.P(10)=11.13.15.17.19=11.13.3.5.17.19FromthefollowingitisprovedthatthereisntanydivisorofP(n)otherthan3&5P(2)=3.5.7.9.11P(10)=11.13.15.17.19P(12)=13.15.17.19.21Hencethelargestdivisoris3×5=15
Commented by Tinkutara last updated on 12/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *