Menu Close

let-P-n-x-1-x-2-1-x-4-1-x-2-n-calculate-lim-n-0-x-P-n-t-dt-with-0-lt-x-lt-1-




Question Number 33744 by prof Abdo imad last updated on 23/Apr/18
let  P_n (x)=(1+x^2 )(1+x^4 )....(1+x^2^n  )  calculate  lim_(n→+∞) ∫_0 ^x  P_n (t)dt  with  0<x<1 .
letPn(x)=(1+x2)(1+x4).(1+x2n)calculatelimn+0xPn(t)dtwith0<x<1.
Commented by prof Abdo imad last updated on 25/Apr/18
we have proved that  P_n (t) = ((1−t^2^(n+1)  )/(1−t^2 )) ⇒  ∫_0 ^x   P_n (t)dt = ∫_0 ^x   ((1−t^2^(n+1)  )/(1−t^2 ))dt  = ∫_0 ^x    (dt/(1−t^2 ))  −∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt  but  lim_(n→+∞)  ∫_0 ^x    (t^2^(n+1)  /(1−t^2 )) dt =0 because 0≤ ⇒t≤x<1  ⇒ lim_(n→+∞)   ∫_0 ^x   P_n (t)dt = ∫_0 ^x  (dt/(1−t^2 ))  =(1/2) ∫_0 ^x  ( (1/(1−t)) +(1/(1+t)))dt =[(1/2)ln∣((1+t)/(1−t))∣]_0 ^c   =(1/2) ln∣ ((1+x)/(1−x))∣ .
wehaveprovedthatPn(t)=1t2n+11t20xPn(t)dt=0x1t2n+11t2dt=0xdt1t20xt2n+11t2dtbutlimn+0xt2n+11t2dt=0because0tx<1limn+0xPn(t)dt=0xdt1t2=120x(11t+11+t)dt=[12ln1+t1t]0c=12ln1+x1x.

Leave a Reply

Your email address will not be published. Required fields are marked *