Menu Close

let-p-n-x-polinom-Maclaurin-for-function-f-x-e-x-How-many-degree-minimal-polinom-n-so-e-x-p-n-x-10-2-for-1-x-1-




Question Number 31674 by gunawan last updated on 12/Mar/18
let p_n (x) polinom Maclaurin for  function f(x)=e^x . How many  degree minimal polinom (n) so  ∣e^x −p_n (x)∣≤ 10^(−2) , for −1≤x≤1?
$$\mathrm{let}\:\mathrm{p}_{{n}} \left({x}\right)\:\mathrm{polinom}\:\mathrm{Maclaurin}\:\mathrm{for} \\ $$$$\mathrm{function}\:{f}\left({x}\right)={e}^{{x}} .\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{degree}\:\mathrm{minimal}\:\mathrm{polinom}\:\left({n}\right)\:\mathrm{so} \\ $$$$\mid{e}^{{x}} −\mathrm{p}_{{n}} \left({x}\right)\mid\leqslant\:\mathrm{10}^{−\mathrm{2}} ,\:\mathrm{for}\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *