Menu Close

let-p-n-x-x-1-6n-1-x-6n-1-1-with-n-integr-prove-that-n-x-2-x-1-2-divide-p-n-x-




Question Number 32330 by abdo imad last updated on 23/Mar/18
let p_n (x)=(x+1)^(6n+1)  −x^(6n+1)  −1 with n integr  prove that ∀n  (x^2 +x+1)^2  divide p_n (x).
letpn(x)=(x+1)6n+1x6n+11withnintegrprovethatn(x2+x+1)2dividepn(x).
Commented by abdo imad last updated on 01/Apr/18
the roots of x^2  +x+1 are j and j^2  with j=e^(i((2π)/3))  for that  we must prove that p_n (j)=p_n (j^2 )=0 andp^′ (j)=p^′ (j^2 )=0  p_n (j) =(j+1)^(6n+1)  −j^(6n+1)  −1  =(−1)^(6n+1)  (j^2 )^(6n+1)   −j −1 = −j^2  −j−1=0 wit j^3 =1  p_n (j^2 ) =(j^2 +1)^(6n+1)  − (j^2 )^(6n+1)  −1  =(−j)^(6n+1)   −j^2  −1  =−j −j^2  −1=0  we have p^′ (x) =(6n+1)(x+1)^(6n)  −(6n+1)x^(6n) ⇒  p^′ (j) =(6n+1)( (j+1)^(6n)  −j^(6n) ) =(6n+1)(j^(12n)  −j^(6n) )=0  p^′ (j^2 )=(6n+1)( (1+j^2 )^(6n)   −(j^2 )^(6n) ) =(6n+1)((−j)^(6n)  −j^(12n) )=0
therootsofx2+x+1arejandj2withj=ei2π3forthatwemustprovethatpn(j)=pn(j2)=0andp(j)=p(j2)=0pn(j)=(j+1)6n+1j6n+11=(1)6n+1(j2)6n+1j1=j2j1=0witj3=1pn(j2)=(j2+1)6n+1(j2)6n+11=(j)6n+1j21=jj21=0wehavep(x)=(6n+1)(x+1)6n(6n+1)x6np(j)=(6n+1)((j+1)6nj6n)=(6n+1)(j12nj6n)=0p(j2)=(6n+1)((1+j2)6n(j2)6n)=(6n+1)((j)6nj12n)=0

Leave a Reply

Your email address will not be published. Required fields are marked *