Question Number 36912 by prof Abdo imad last updated on 07/Jun/18
$${let}\:\:\langle{p},{q}\rangle=\:\int_{−\mathrm{1}} ^{\mathrm{1}} {p}\left({x}\right){q}\left({x}\right){dx}\:\:{with}\:{p}\:{and}\:{q}\:{are} \\ $$$${two}\:{polynoms}\:{fromR}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right){let}\:{p}\left({x}\right)={x}^{{n}} \:\:\:{calculate}\:\langle{p},{p}\rangle \\ $$$$\left.\mathrm{2}\right){let}\:{p}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+….+{x}^{{n}} \\ $$$${find}\:\langle{p},{p}\rangle. \\ $$
Commented by abdo.msup.com last updated on 10/Jun/18
$$\left.\mathrm{1}\right)\langle{p},{p}\rangle=\int_{−\mathrm{1}} ^{\mathrm{1}} {p}^{\mathrm{2}} \left({x}\right){dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} {dx}\:=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\left[{x}^{\mathrm{2}{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){p}\left({x}\right)=\sum_{{i}=\mathrm{0}} ^{{n}} \:{x}^{{i}} \:\Rightarrow\langle{p},{p}\rangle=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\sum_{{i}=\mathrm{0}} ^{{n}} {x}_{{i}} \right)^{\mathrm{2}} {dx} \\ $$$$=\int_{−\mathrm{1}} ^{\mathrm{1}} \:\left(\sum_{{i}=\mathrm{0}} ^{{n}} \:\left({x}^{{i}} \right)^{\mathrm{2}} \:+\mathrm{2}\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {x}^{{i}} \:{x}^{{j}} \right){dx} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{n}} \:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{i}} \:{dx}\:+\mathrm{2}\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \int_{−\mathrm{1}} ^{\mathrm{1}} {x}^{{i}+{j}} {dx} \\ $$$$=\mathrm{2}\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}{i}+\mathrm{1}}\:+\mathrm{2}\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \left[\frac{\mathrm{1}}{{i}+{j}+\mathrm{1}}{x}^{{i}+{j}+\mathrm{1}} \right]_{−\mathrm{1}} ^{\mathrm{1}} \\ $$$$=\mathrm{2}\sum_{{i}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{2}{i}+\mathrm{1}}\:+\mathrm{2}\:\sum_{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} \left\{\:\frac{\mathrm{1}}{{i}+{j}+\mathrm{1}}−\frac{\left(−\mathrm{1}\right)^{{i}+{j}+\mathrm{1}} }{{i}+{j}+\mathrm{1}}\right\} \\ $$