let-p-x-1-e-i-x-n-1-e-i-x-n-with-n-integr-natural-1-find-the-roots-of-p-x-2-fctorize-inside-C-x-p-x-3-factorize-inside-R-x-p-x-R- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 39022 by maxmathsup by imad last updated on 01/Jul/18 letp(x)=(1+eiθx)n−(1−eiθx)nwithnintegrnatural1)findtherootsofp(x)2)fctorizeinsideC[x]p(x)3)factorizeinsideR[x]p(x).θ∈R Commented by math khazana by abdo last updated on 10/Jul/18 1)letz=eiθxso?p(x)=0⇔(1−z)n(1+z)n=1⇔(1−z1+z)n=1⇒1−zk1+zk=eikπnk∈[[0,n−1]]⇒1−zk=eikπn+eikπnzk⇒(1+eikπn)zk=1−eikπn⇒zk=1−eikπn1+eikπn=1−cos(kπn)−isin(kπn)1+cos(kπn)+isin(kπn)=2sin2(kπ2n)−2isin(kπ2n)cos(kπ2n)2cos2(kπ2n)+2isin(kπ2n)cos(kπ2n)=−isin(kπ2n){cos(kπ2n)+isin(kπ2n)}cos(kπ2n){cos(kπ2n)+isin(kπ2n)}=−itan(kπ2n)⇒therootsofp(x)arethecomplexxk=−ie−iθtan(kπ2n)2)p(x)=λ∏k=0n−1(x−xk)=λ∏k=0n−1(x+ie−iθtan(kπ2n))letdetermineλwehavep(x)=(1+eiθx)n−(1−eiθx)n=∑k=0nCnkeikθxk−∑k=0nCnk(−1)keikθxk=∑k=0nCnk(1−(−1)k)eikθxk=∑p=0[n−12]Cn2p+12ei(2p+1)θx2p+1⇒λ=2Cn2[n−12]ei{2[n−12]+1)θ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-ln-1-x-2-1-x-2-1-dx-Next Next post: let-g-x-arctan-x-1-t-2-1-t-2-dt-with-x-gt-0-find-a-simple-form-of-g-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.