Menu Close

let-p-x-1-e-i-x-n-1-e-i-x-n-with-n-integr-natural-1-find-the-roots-of-p-x-2-fctorize-inside-C-x-p-x-3-factorize-inside-R-x-p-x-R-




Question Number 39022 by maxmathsup by imad last updated on 01/Jul/18
let p(x)= (1+e^(iθ) x)^n  −(1−e^(iθ) x)^n  with n integr natural  1) find the roots of p(x)  2) fctorize inside C[x] p(x)  3) factorize inside R[x] p(x).  θ ∈R
letp(x)=(1+eiθx)n(1eiθx)nwithnintegrnatural1)findtherootsofp(x)2)fctorizeinsideC[x]p(x)3)factorizeinsideR[x]p(x).θR
Commented by math khazana by abdo last updated on 10/Jul/18
1) let  z =e^(iθ) x  so?p(x)=0 ⇔ (((1−z)^n )/((1+z)^n )) =1⇔  (((1−z)/(1+z)))^n  =1 ⇒((1−z_k )/(1+z_k )) = e^(i((kπ)/n))      k ∈[[0,n−1]] ⇒  1−z_k =e^((ikπ)/n)  + e^((ikπ)/n)  z_k   ⇒(1+e^((ikπ)/n) )z_k = 1−e^((ikπ)/n)  ⇒  z_k = ((1−e^((ikπ)/n) )/(1+e^((ikπ)/n) )) = ((1−cos(((kπ)/n)) −i sin(((kπ)/n)))/(1+cos(((kπ)/n))+i sin(((kπ)/n))))  = ((2sin^2 (((kπ)/(2n)))−2isin(((kπ)/(2n)))cos(((kπ)/(2n))))/(2cos^2 (((kπ)/(2n))) +2i sin(((kπ)/(2n)))cos(((kπ)/(2n)))))  =((−isin(((kπ)/(2n))) { cos(((kπ)/(2n))) +isin(((kπ)/(2n)))})/(cos(((kπ)/(2n))){ cos(((kπ)/(2n))) +isin(((kπ)/(2n)))}))  =−i tan(((kπ)/(2n)))⇒ the roots of p(x) are the complex  x_k =−i e^(−iθ)  tan(((kπ)/(2n)))  2) p(x)=λ Π_(k=0) ^(n−1) (x−x_k )  =λ Π_(k=0) ^(n−1)  (x +i e^(−iθ)  tan(((kπ)/(2n)))) let determine λ  wehave p(x)=(1+e^(iθ) x)^n  −(1−e^(iθ) x)^n   =Σ_(k=0) ^n  C_n ^k  e^(ikθ)  x^k  −Σ_(k=0) ^n   C_n ^k   (−1)^k  e^(ikθ)  x^k   = Σ_(k=0) ^n   C_n ^k  (1−(−1)^k ) e^(ikθ)  x^k   = Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)   2 e^(i(2p+1)θ)  x^(2p+1)  ⇒  λ =2 C_n ^(2[((n−1)/2)])    e^(i{2[((n−1)/2)] +1)θ)
1)letz=eiθxso?p(x)=0(1z)n(1+z)n=1(1z1+z)n=11zk1+zk=eikπnk[[0,n1]]1zk=eikπn+eikπnzk(1+eikπn)zk=1eikπnzk=1eikπn1+eikπn=1cos(kπn)isin(kπn)1+cos(kπn)+isin(kπn)=2sin2(kπ2n)2isin(kπ2n)cos(kπ2n)2cos2(kπ2n)+2isin(kπ2n)cos(kπ2n)=isin(kπ2n){cos(kπ2n)+isin(kπ2n)}cos(kπ2n){cos(kπ2n)+isin(kπ2n)}=itan(kπ2n)therootsofp(x)arethecomplexxk=ieiθtan(kπ2n)2)p(x)=λk=0n1(xxk)=λk=0n1(x+ieiθtan(kπ2n))letdetermineλwehavep(x)=(1+eiθx)n(1eiθx)n=k=0nCnkeikθxkk=0nCnk(1)keikθxk=k=0nCnk(1(1)k)eikθxk=p=0[n12]Cn2p+12ei(2p+1)θx2p+1λ=2Cn2[n12]ei{2[n12]+1)θ

Leave a Reply

Your email address will not be published. Required fields are marked *