let-p-x-1-ix-n-1-ix-n-1-find-the-roots-of-p-x-and-factorize-p-x-give-p-x-at-form-of-arcs- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 30522 by abdo imad last updated on 22/Feb/18 letp(x)=(1+ix)n−(1−ix)n1)findtherootsofp(x)andfactorizep(x))givep(x)atformofarcs. Commented by abdo imad last updated on 24/Feb/18 1)wehavep(x)=2iIm(1+ix)nbut∣1+ix∣=1+x2⇒1+ix=1+x2(11+x2+ix1+x2)=reiθ⇒r=1+x2andcosθ=11+x2andsinθ=x1+x2⇒tanθ=x⇒θ=artanx⇒(1+ix)n=(1+x2)neinarctanx⇒p(x)=2i(1+x2)nsin(narctanx)p(x)=0⇔narctanx=kπ⇔arctanx=kπn⇔xk=tan(kπn)andk∈[[0,n−1]]andp(x)=λ∏k=0n−1(x−tan(kπn))letfindλwehavep(x)=∑k=0nCnk(ix)k−∑k=0nCnk(−ix)k=∑k=0nCnk((i)k−(−i)k)xk=2i∑p=0[n−12]Cn2p+1x2p+1⇒λ=2iCn2[n−12]+1⇒p(x)=2iCn2[n−12]+1∏k=0n−1(x−tan(kπn)).2)p(x)=2i(1+x2)nsin(narctanx). Answered by sma3l2996 last updated on 23/Feb/18 p(x)=(1+x2)n(einθ−e−inθ)∖θ=tan−1x=(1+x2)n(2isin(nθ))p(x)=2i(1+x2)nsin(ntan−1(x))tan−1(xk)=kπn⇒xk=tan(kπn)sorootsofp(x)areαk=tan(kπn)∖k=(0,1,2,3,…,n−1)p(x)=2i(1+x2)n∏k=0n−1(x−tan(kπn)) Commented by abdo imad last updated on 24/Feb/18 youhavecommitedaerrorinleadingcoefficientofp(x)sir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-a-gt-0-find-f-a-0-dx-x-a-a-2-x-2-Next Next post: k-0-k-n-1-are-roots-of-x-n-1-simplify-n-k-0-n-1-x-k-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.