Menu Close

let-p-x-1-ix-n-1-ix-n-1-find-the-roots-of-p-x-and-factorize-p-x-give-p-x-at-form-of-arcs-




Question Number 30522 by abdo imad last updated on 22/Feb/18
let p(x)= (1+ix)^n  −(1−ix)^n   1) find the roots of p(x) and factorize p(x)  ) give p(x) at form of arcs.
letp(x)=(1+ix)n(1ix)n1)findtherootsofp(x)andfactorizep(x))givep(x)atformofarcs.
Commented by abdo imad last updated on 24/Feb/18
1) we have p(x)=2i Im(1+ix)^n  but ∣1+ix∣=(√(1+x^2 ))  ⇒1+ix =(√(1+x^2 )) ( (1/( (√(1+x^2 )))) +i (x/( (√(1+x^2 )))))=r e^(iθ)  ⇒r=(√(1+x^2 ))  and cosθ =(1/( (√(1+x^2 )))) and sinθ = (x/( (√(1+x^2 )))) ⇒tanθ=x   ⇒θ= artanx ⇒(1+ix)^n =((√(1+x^2 )))^n  e^(inarctanx)  ⇒  p(x)= 2i((√(1+x^2 )) )^n  sin(narctanx)  p(x)=0 ⇔ narctanx=kπ ⇔arctanx=((kπ)/n) ⇔ x_k =tan(((kπ)/n))  and  k∈[[0,n−1]] and p(x)=λ Π_(k=0) ^(n−1)  (x−tan(((kπ)/n)))let  find λ we have p(x)= Σ_(k=0) ^n  C_n ^k  (ix)^k  −Σ_(k=0) ^n  C_n ^k (−ix)^k   =Σ_(k=0) ^n  C_n ^k  ((i)^k  −(−i)^k )x^k   =2i Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  x^(2p+1)   ⇒λ= 2i C_n ^(2[((n−1)/2)]+1)  ⇒  p(x)= 2i C_n ^(2[((n−1)/2)]+1)   Π_(k=0) ^(n−1)  (x−tan(((kπ)/n))) .  2) p(x)=2i ((√(1+x^2 )) )^n  sin(narctanx).
1)wehavep(x)=2iIm(1+ix)nbut1+ix∣=1+x21+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andcosθ=11+x2andsinθ=x1+x2tanθ=xθ=artanx(1+ix)n=(1+x2)neinarctanxp(x)=2i(1+x2)nsin(narctanx)p(x)=0narctanx=kπarctanx=kπnxk=tan(kπn)andk[[0,n1]]andp(x)=λk=0n1(xtan(kπn))letfindλwehavep(x)=k=0nCnk(ix)kk=0nCnk(ix)k=k=0nCnk((i)k(i)k)xk=2ip=0[n12]Cn2p+1x2p+1λ=2iCn2[n12]+1p(x)=2iCn2[n12]+1k=0n1(xtan(kπn)).2)p(x)=2i(1+x2)nsin(narctanx).
Answered by sma3l2996 last updated on 23/Feb/18
p(x)=(√((1+x^2 )^n ))(e^(inθ) −e^(−inθ) )  \θ=tan^(−1) x  =(√((1+x^2 )^n ))(2isin(nθ))  p(x)=2i(√((1+x^2 )^n ))sin(ntan^(−1) (x))  tan^(−1) (x_k )=((kπ)/n)  ⇒x_k =tan(((kπ)/n))  so  roots of p(x) are α_k =tan(((kπ)/n))  \k=(0,1,2,3,...,n−1)  p(x)=2i(√((1+x^2 )^n ))Π_(k=0) ^(n−1) (x−tan(((kπ)/n)))
p(x)=(1+x2)n(einθeinθ)θ=tan1x=(1+x2)n(2isin(nθ))p(x)=2i(1+x2)nsin(ntan1(x))tan1(xk)=kπnxk=tan(kπn)sorootsofp(x)areαk=tan(kπn)k=(0,1,2,3,,n1)p(x)=2i(1+x2)nk=0n1(xtan(kπn))
Commented by abdo imad last updated on 24/Feb/18
you have commited a error in leading coefficient of p(x)  sir.
youhavecommitedaerrorinleadingcoefficientofp(x)sir.

Leave a Reply

Your email address will not be published. Required fields are marked *