let-p-x-1-ix-x-2-n-1-ix-x-2-n-1-determine-roots-of-p-x-2-find-p-x-at-form-a-i-x-i-3-ddtermne-p-x-at-form-arctan-4-factorize-p-x-inside-C-x-5-calculate-0-1-p-x-dxand-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 95837 by mathmax by abdo last updated on 28/May/20 letp(x)=(1+ix+x2)n−(1−ix+x2)n1)determinerootsofp(x)2)findp(x)atformΣaixi3)ddtermnep(x)atformarctan4)factorizep(x)insideC[x]5)calculate∫01p(x)dxand∫1∞dxp(x) Answered by mathmax by abdo last updated on 02/Jun/20 1)p(x)=0⇔(1+ix+x2)n=(1−ix+x2)n⇒(1+ix+x21−ix+x2)n=1letz=1+ix+x21−ix+x2⇒1+ix+x2=z−izx+zx2⇒x2+ix+1−zx2+izx−z=0⇒(1−z)x2+i(z+1)x+1−z=0Δ=−(z+1)2−4(1−z)2⇒x1=−i(z+1)+i(z+1)2+4(z−1)22(1−z)x2=−i(z+1)−i(z+1)2+4(z−1)22(1−z)zn=1⇒zn=ei2kπ⇒zk=ei2kπnwithk∈[[0,n−1]]⇒therootsarex1k=−i(zk+1)+i(zk+1)2+4(zk−1)22(1−zk)orx2k=−i(zk+1)−i(zk+1)2+4(zk−1)22(1−zk) Answered by mathmax by abdo last updated on 02/Jun/20 2)wehavep(x)=(1+x2+ix)n−(1+x2−ix)n=∑k=0nCnk(ix)k(1+x2)n−k−∑k=0nCnk(−ix)k(1+x2)n−k=∑k=0nCnk(1+x2)n−k{ik−(−i)k}xk=∑p=0[n−12]Cn2p+1(1+x2)n−2p−1(2i)(−1)px2p+1=2i∑p=0[n−12](−1)pCn2p+1x2p+1(∑k=0n−2p−1Cn−2p−1kx2k)=2i∑p=0[n−12](−1)pCn2p+1(∑k=0n−2p−1Cn−2p−1kx2k+2p+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-30299Next Next post: solve-y-3-2y-2-3y-2y-sinx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.