Menu Close

let-p-x-1-ix-x-2-n-1-ix-x-2-n-1-determine-roots-of-p-x-2-find-p-x-at-form-a-i-x-i-3-ddtermne-p-x-at-form-arctan-4-factorize-p-x-inside-C-x-5-calculate-0-1-p-x-dxand-1-




Question Number 95837 by mathmax by abdo last updated on 28/May/20
let p(x)=(1+ix+x^2 )^n −(1−ix +x^2 )^n   1) determine roots of p(x)  2) find p(x) at form Σ a_i  x^i   3)ddtermne p(x) at form arctan  4) factorize p(x) inside C[x]  5) calculate ∫_0 ^1  p(x)dxand ∫_1 ^∞  (dx/(p(x)))
letp(x)=(1+ix+x2)n(1ix+x2)n1)determinerootsofp(x)2)findp(x)atformΣaixi3)ddtermnep(x)atformarctan4)factorizep(x)insideC[x]5)calculate01p(x)dxand1dxp(x)
Answered by mathmax by abdo last updated on 02/Jun/20
1) p(x)=0⇔(1+ix+x^2 )^n =(1−ix +x^2 )^n  ⇒(((1+ix+x^2 )/(1−ix+x^2 )))^n  =1 let  z =((1+ix +x^2 )/(1−ix +x^2 )) ⇒1+ix+x^2  =z−izx+zx^2  ⇒x^2  +ix+1−zx^2 +izx−z =0 ⇒  (1−z)x^2  +i(z+1)x +1−z =0  Δ =−(z+1)^2 −4(1−z)^2   ⇒x_1 =((−i(z+1)+i(√((z+1)^2  +4(z−1)^2 )))/(2(1−z)))  x_2 =((−i(z+1)−i(√((z+1)^2  +4(z−1)^2 )))/(2(1−z)))  z^n  =1 ⇒z^n  =e^(i2kπ)  ⇒z_k =e^((i2kπ)/n)   with k∈[[0,n−1]] ⇒the roots are  x_(1k) =((−i(z_k +1)+i(√((z_k +1)^2  +4(z_k −1)^2 )))/(2(1−z_k )))  or  x_(2k) =((−i(z_k +1)−i(√((z_k +1)^2  +4(z_k −1)^2 )))/(2(1−z_k )))
1)p(x)=0(1+ix+x2)n=(1ix+x2)n(1+ix+x21ix+x2)n=1letz=1+ix+x21ix+x21+ix+x2=zizx+zx2x2+ix+1zx2+izxz=0(1z)x2+i(z+1)x+1z=0Δ=(z+1)24(1z)2x1=i(z+1)+i(z+1)2+4(z1)22(1z)x2=i(z+1)i(z+1)2+4(z1)22(1z)zn=1zn=ei2kπzk=ei2kπnwithk[[0,n1]]therootsarex1k=i(zk+1)+i(zk+1)2+4(zk1)22(1zk)orx2k=i(zk+1)i(zk+1)2+4(zk1)22(1zk)
Answered by mathmax by abdo last updated on 02/Jun/20
2) we have p(x) =(1+x^2  +ix)^n −(1+x^2 −ix)^n   =Σ_(k=0) ^n  C_n ^k (ix)^k  (1+x^2 )^(n−k)  −Σ_(k=0) ^n  C_n ^k (−ix)^k (1+x^2 )^(n−k)   =Σ_(k=0) ^n  C_n ^k (1+x^2 )^(n−k) { i^k −(−i)^k }x^k   =Σ_(p=0) ^([((n−1)/2)])  C_n ^(2p+1)  (1+x^2 )^(n−2p−1)  (2i)(−1)^p  x^(2p+1)   =2iΣ_(p=0) ^([((n−1)/2)])  (−1)^p  C_n ^(2p+1)  x^(2p+1) (Σ_(k=0) ^(n−2p−1)  C_(n−2p−1) ^k  x^(2k) )  =2i Σ_(p=0) ^([((n−1)/2)])  (−1)^p  C_n ^(2p+1) (Σ_(k=0) ^(n−2p−1)  C_(n−2p−1) ^k  x^(2k+2p+1) )
2)wehavep(x)=(1+x2+ix)n(1+x2ix)n=k=0nCnk(ix)k(1+x2)nkk=0nCnk(ix)k(1+x2)nk=k=0nCnk(1+x2)nk{ik(i)k}xk=p=0[n12]Cn2p+1(1+x2)n2p1(2i)(1)px2p+1=2ip=0[n12](1)pCn2p+1x2p+1(k=0n2p1Cn2p1kx2k)=2ip=0[n12](1)pCn2p+1(k=0n2p1Cn2p1kx2k+2p+1)

Leave a Reply

Your email address will not be published. Required fields are marked *