let-p-x-1-jx-n-1-jx-n-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-j-e-i-2pi-3- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 35056 by math khazana by abdo last updated on 14/May/18 letp(x)=(1+jx)n−(1−jx)n1)findtherootsofp(x)2)factorizep(x)insideC[x]j=ei2π3. Commented by math khazana by abdo last updated on 10/Jun/18 p(x)=0⇔(1−jx)n(1+jx)n=1⇔(1−jx1+jx)n=1therootsofzn=1arethecomplexzk=ei2kπnk∈[[0,n−1]]sotherootsofp(x)arethecomplexZk/1−jZk1+jZk=zk⇔1−jZk=zk+jzkZk⇔j(1+zk)Zk=1−zk⇔Zk=1j1−zk1+zk⇒jZk=1−cos(2kπn)−isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)−2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=−isin(kπn)eikπncos(kπn)eikπn=−itan(kπn)⇒Zk=−ijtan(kπn)=e−iπ2e−i2π3tan(kπn)=e−i(7π6)tan(kπn)withn∈[[1,n−1]] Commented by math khazana by abdo last updated on 10/Jun/18 p(x)=λ∏k=1n−1(x−Zk)=λ∏k=1n−1(x−e−i7π6tan(kπn))λisthedominentcoefficientletfinditwehavep(x)=(1+jx)n−(1−jx)n=∑k=0nCnkjkxk−∑k=0nCnk(−j)kxk=∑k=0nCnk(jk−(−j)k)xk⇒λ=Cnn(jn−(−j)n)=ei2nπ3−(−1)nei2nπ3=(1−(−1)n)ei2nπ3⇒p(x)={1−(−1)n}ei2nπ3∏k=1n(x−e−i7π6tan(kπn)). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-166125Next Next post: find-0-pi-4-dt-1-cos-2-t-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.