Menu Close

let-p-x-1-jx-n-1-jx-n-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-j-e-i-2pi-3-




Question Number 35056 by math khazana by abdo last updated on 14/May/18
let p(x)=(1+jx)^n  −(1−jx)^n   1) find the roots of p(x)  2)factorize p(x) inside C[x]  j =e^(i((2π)/3))  .
letp(x)=(1+jx)n(1jx)n1)findtherootsofp(x)2)factorizep(x)insideC[x]j=ei2π3.
Commented by math khazana by abdo last updated on 10/Jun/18
p(x)=0 ⇔ (((1−jx)^n )/((1+jx)^n )) =1⇔(((1−jx)/(1+jx)))^n  =1 the roots  of z^n =1 are the complex z_k  =e^(i((2kπ)/n))   k∈[[0,n−1]]  so the roots of p(x) are the complex Z_k  /  ((1−jZ_k )/(1+jZ_k )) =z_k  ⇔1−jZ_k  =z_k  +jz_k Z_k   ⇔  j(1+z_k )Z_k =1−z_k  ⇔Z_k  =(1/j) ((1−z_k )/(1+z_k )) ⇒  j Z_k = ((1 −cos(((2kπ)/n)) −isin(((2kπ)/n)))/(1+cos(((2kπ)/n)) +i sin(((2kπ)/n))))  =((2sin^2 (((kπ)/n)) −2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n)) +2isin(((kπ)/n))cos(((kπ)/n))))  =((−isin(((kπ)/n))e^(i((kπ)/n)) )/(cos(((kπ)/n))e^(i((kπ)/n)) )) =−i tan(((kπ)/n)) ⇒  Z_(k ) = ((−i)/j)tan(((kπ)/n)) =e^(−i(π/2))  e^(−i((2π)/3))   tan(((kπ)/n))  = e^(−i( ((7π)/6))) tan(((kπ)/n))   with n ∈[[1,n−1]]
p(x)=0(1jx)n(1+jx)n=1(1jx1+jx)n=1therootsofzn=1arethecomplexzk=ei2kπnk[[0,n1]]sotherootsofp(x)arethecomplexZk/1jZk1+jZk=zk1jZk=zk+jzkZkj(1+zk)Zk=1zkZk=1j1zk1+zkjZk=1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=isin(kπn)eikπncos(kπn)eikπn=itan(kπn)Zk=ijtan(kπn)=eiπ2ei2π3tan(kπn)=ei(7π6)tan(kπn)withn[[1,n1]]
Commented by math khazana by abdo last updated on 10/Jun/18
p(x) =λ Π_(k=1) ^(n−1 )  ( x−Z_k ) =λ Π_(k=1) ^(n−1)  (x−e^(−i((7π)/6)) tan(((kπ)/n)))  λ is the dominentcoefficient  let find it  we have p(x) =(1+jx)^n  −(1−jx)^n   = Σ_(k=0) ^n   C_n ^k  j^k x^k   −Σ_(k=0) ^n  C_n ^k  (−j)^k  x^k   = Σ_(k=0) ^n   C_n ^k (j^k  −(−j)^k )x^k  ⇒  λ = C_n ^n  (j^n  −(−j)^n ) =e^(i((2nπ)/3))  −(−1)^n  e^(i((2nπ)/3))   =(1−(−1)^n ) e^(i((2nπ)/3))  ⇒  p(x) ={1−(−1)^n }e^(i((2nπ)/3))  Π_(k=1) ^n (x−e^(−i((7π)/6))  tan(((kπ)/n))).
p(x)=λk=1n1(xZk)=λk=1n1(xei7π6tan(kπn))λisthedominentcoefficientletfinditwehavep(x)=(1+jx)n(1jx)n=k=0nCnkjkxkk=0nCnk(j)kxk=k=0nCnk(jk(j)k)xkλ=Cnn(jn(j)n)=ei2nπ3(1)nei2nπ3=(1(1)n)ei2nπ3p(x)={1(1)n}ei2nπ3k=1n(xei7π6tan(kπn)).

Leave a Reply

Your email address will not be published. Required fields are marked *