Menu Close

let-p-x-1-jx-n-1-jx-n-with-j-e-i-2pi-3-find-p-at-form-r-x-e-i-x-2-calculate-0-1-r-x-e-i-x-dx-




Question Number 37224 by abdo.msup.com last updated on 11/Jun/18
let p(x)=(1+jx)^n  −(1−jx)^n  with  j=e^(i((2π)/3))    find p at  form r(x)e^(iθ(x))   2) calculate ∫_0 ^1 r(x) e^(iθ(x)) dx .
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} \:−\left(\mathrm{1}−{jx}\right)^{{n}} \:{with} \\ $$$${j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{find}\:{p}\:{at}\:\:{form}\:{r}\left({x}\right){e}^{{i}\theta\left({x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {r}\left({x}\right)\:{e}^{{i}\theta\left({x}\right)} {dx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *