Menu Close

let-P-x-1-x-2-1-x-4-1-x-2-n-1-solve-inside-C-the-equation-P-x-0-2-factorize-P-x-inside-C-x-3-calvulate-P-x-4-decompose-F-1-P-x-




Question Number 96375 by mathmax by abdo last updated on 01/Jun/20
let P(x) =(1+x^2 )(1+x^4 )...(1+x^2^n  )  1) solve inside C  the equation P(x)=0  2) factorize P(x) inside C[x]  3) calvulate P^′ (x)  4) decompose F =(1/(P(x)))
letP(x)=(1+x2)(1+x4)(1+x2n)1)solveinsideCtheequationP(x)=02)factorizeP(x)insideC[x]3)calvulateP(x)4)decomposeF=1P(x)
Answered by 1549442205 last updated on 01/Jun/20
1/P(x)=0⇔x^2^n  +1=0(n=1,2,3,...)⇔  x^2^n  =−1=[cos(2k+1)π+isin(2k+1)π]  ⇒x=[cos(2k+1)π+isin(2k+1)π]^(1/2^n )   =cos(((2k+1)π)/2^n )+i.sin(((2k+1)π)/2^n )(k=0,1,2,  ...,2^n −1).It follows that eq.P(x)=0 has  2+4+8+...+2^n =2(2^n −1)roots  2/P(x)=Π_(n=1) ^(2^n )   Π_(k=0) ^(2^n −1) (cos(((2k+1)π)/2^n )+i.sin(((2k+1)π)/2^n ))  3/P(x)=((1−x^(2n+1) )/(1−x^2 ))⇒P ′(x)=((−(2n+1)x^(2n) (1−x^2 )+2x(1−x^(2n+1) ))/((1−x^2 )^2 ))  =(((2n−1)x^(2n+2) −(2n+1)x^(2n) +2x)/((1−x^2 )^2 ))
1/P(x)=0x2n+1=0(n=1,2,3,)x2n=1=[cos(2k+1)π+isin(2k+1)π]x=[cos(2k+1)π+isin(2k+1)π]12n=cos(2k+1)π2n+i.sin(2k+1)π2n(k=0,1,2,Missing or unrecognized delimiter for \left2+4+8++2n=2(2n1)roots2/P(x)=Π2nn=1Π2n1k=0(cos(2k+1)π2n+i.sin(2k+1)π2n)3/P(x)=1x2n+11x2P(x)=(2n+1)x2n(1x2)+2x(1x2n+1)(1x2)2=(2n1)x2n+2(2n+1)x2n+2x(1x2)2
Answered by abdomathmax last updated on 01/Jun/20
1) let prove by recurrence that  (1+x^2 )(1+x^4 )....(1+x^2^n  ) =((1−x^2^(n+1)  )/(1−x^2 ))    (x^2  ≠1)  n=1 (1+x^2 )=((1−x^4 )/(1−x^2 )) (true) let suppose  (p_n )true ⇒(1+x^2 )(1+x^4 )....(1+x^2^(n+1)  )  =(1+x^2 )(1+x^4 )....(1+x^2^n  )(1+x^2^(n+1)  )  =((1−x^2^(n+1)  )/(1−x^2 ))×(1+x^2^(n+1)  ) =((1−(x^2^(n+1)  )^2 )/(1−x^2 ))  =((1−x^2^(n+2)  )/(1−x^2 ))  so the relation is true at term (n+1)  ⇒P(x)=0 ⇔((1−x^2^(n+1)  )/(1−x^2 )) =0  and x≠+^− 1  ⇒x^2^(n+1)  =1   let  m =2^(n+1)   (e) ⇒x^m  =1 =e^(i(2kπ))  ⇒  the roots are z_k =e^(i(((2kπ)/m)))  k∈{0,....m−1} ⇒  z_k =e^(i(((kπ)/2^n )))   and k∈{1,....2^(n+1) −1} and k≠2^n
1)letprovebyrecurrencethat(1+x2)(1+x4).(1+x2n)=1x2n+11x2(x21)n=1(1+x2)=1x41x2(true)letsuppose(pn)true(1+x2)(1+x4).(1+x2n+1)=(1+x2)(1+x4).(1+x2n)(1+x2n+1)=1x2n+11x2×(1+x2n+1)=1(x2n+1)21x2=1x2n+21x2sotherelationistrueatterm(n+1)P(x)=01x2n+11x2=0andx+1x2n+1=1letm=2n+1(e)xm=1=ei(2kπ)therootsarezk=ei(2kπm)k{0,.m1}zk=ei(kπ2n)andk{1,.2n+11}andk2n
Commented by abdomathmax last updated on 01/Jun/20
2. P(x) =Π_(k=1and k≠2^n ) ^(2^(n+1) −1) (x−e^(i(((kπ)/2^n ))) )
2.P(x)=k=1andk2n2n+11(xei(kπ2n))
Commented by abdomathmax last updated on 01/Jun/20
3. we have P(x) =((x^2^(n+1)  −1)/(x^2 −1))   let 2^(n+1)  =m ⇒  P(x) =((x^m −1)/(x^2 −1)) ⇒P^′ (x) =((mx^(m−1) (x^2 −1)−2x(x^m −1))/((x^2 −1)^2 ))  =((mx^(m+1)  −mx^(m−1) −2x^(m+1)  +2x)/((x^2 −1)^2 ))  =(((m−2)x^(m+1) −mx^(m−1)  +2x)/((x^2 −1)^2 ))  ⇒P^′ (x) =(((2^(n+1) −2)x^(2^(n+1) +1) −2^(n+1)  x^(2^(m+1) −1) +2x)/((x^2 −1)^2 ))
3.wehaveP(x)=x2n+11x21let2n+1=mP(x)=xm1x21P(x)=mxm1(x21)2x(xm1)(x21)2=mxm+1mxm12xm+1+2x(x21)2=(m2)xm+1mxm1+2x(x21)2P(x)=(2n+12)x2n+1+12n+1x2m+11+2x(x21)2
Commented by abdomathmax last updated on 01/Jun/20
4. (1/(P(x))) =(1/(Π_(k=1and k≠2^n ) ^(2^(n+1) −1)  (x−e^(i(((kπ)/2^n ))) )))  =Σ_(k=1and k≠2^n ) ^(2^(n+1−1)  )   (a_k /(x−e^(i(((kπ)/2^n ))) ))  a_k =(1/(P^′ (x_k )))
4.1P(x)=1k=1andk2n2n+11(xei(kπ2n))=k=1andk2n2n+11akxei(kπ2n)ak=1P(xk)
Commented by abdomathmax last updated on 01/Jun/20
P^′ (x_k ) =(((2^(n+1) −2)(x_k )^(2^(n+1) +1) −2^(n+1)  (x_k )^(2^(m+1) −1)  +2x_k )/((x_k ^2 −1)^2 ))  x_k  roots of P(x)
P(xk)=(2n+12)(xk)2n+1+12n+1(xk)2m+11+2xk(xk21)2xkrootsofP(x)

Leave a Reply

Your email address will not be published. Required fields are marked *