Question Number 33743 by prof Abdo imad last updated on 23/Apr/18
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right)\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$
Commented by caravan msup abdo. last updated on 24/Apr/18
$${we}\:{have}\:{proved}\:{that}\:{p}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${if}\:{x}^{\mathrm{2}} \neq\mathrm{1}\:{so}\:{p}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}^{\mathrm{2}^{{n}+\mathrm{1}} } =\:{e}^{{i}\mathrm{2}{k}\pi} \\ $$$${if}\:{x}={r}\:{e}^{{i}\theta} \:{we}\:{get}\:{r}=\mathrm{1}\:{and}\:\mathrm{2}^{{n}+\mathrm{1}} \theta\:=\mathrm{2}{k}\pi \\ $$$$\Rightarrow\:\theta_{{k}} \:=\:\frac{\mathrm{2}{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:=\:\frac{{k}\pi}{\mathrm{2}^{{n}} }\:{and}\:{k}\in\left[\left[\mathrm{1},\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}\right]\right] \\ $$$${the}\:{roots}\:{of}\:{p}\left({x}\right)\:{are}\:{the}\:{complex} \\ $$$${z}_{{k}} \:\:={e}^{{i}\frac{{k}\pi}{\mathrm{2}^{{n}} \:\:\:}} \:{with}\:\mathrm{1}\leqslant{k}\leqslant\:\mathrm{2}^{{n}+\mathrm{1}} \:−\mathrm{1}\:\:{and}\:{k}\neq\mathrm{2}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{p}\left({x}\right)\:=\prod_{{k}=\mathrm{1}\:\:{and}\:{k}\neq\mathrm{2}^{{n}} } ^{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}} \:\:\left({z}−{e}^{{i}\frac{{k}\pi}{\mathrm{2}^{{n}} }} \right) \\ $$