Menu Close

let-p-x-1-x-2-1-x-4-1-x-2-n-with-n-integr-natural-1-find-a-simple-form-of-p-x-2-find-roots-of-p-x-and-decompose-p-x-inside-C-x-3-calculate-0-1-p-x-dx-4-decompose-the-fraction-F-x




Question Number 54808 by turbo msup by abdo last updated on 11/Feb/19
let p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  with n integr natural  1) find a simple form of p(x)  2) find roots of p(x)and decompose  p(x) inside C[x]  3)calculate ∫_0 ^1  p(x)dx  4) decompose the fraction  F(x)=(1/(p(x))) .
letp(x)=(1+x2)(1+x4)(1+x2n)withnintegrnatural1)findasimpleformofp(x)2)findrootsofp(x)anddecomposep(x)insideC[x]3)calculate01p(x)dx4)decomposethefractionF(x)=1p(x).
Commented by maxmathsup by imad last updated on 13/Feb/19
1) we can use recurrence to prove that  for x≠+^− 1  P(x) =((1−x^2^(n+1)  )/(1−x^2 ))  2) P(z)=0 ⇔ 1−z^2^(n+1)  =0   ⇔ 1−z^q  =0  with m=2^(n+1)   the roots of   z^m =1 are z_k =e^((i2kπ)/m)   with k  ∈ [[0,m−1]] ⇒z_k =e^((i2kπ)/2^(n+1) )   = e^((ikπ)/2^n )   with k ∈[[0,2^(n+1) −1]]  but  but eliminate values of k /z_k ^2 =1 .
1)wecanuserecurrencetoprovethatforx+1P(x)=1x2n+11x22)P(z)=01z2n+1=01zq=0withm=2n+1therootsofzm=1arezk=ei2kπmwithk[[0,m1]]zk=ei2kπ2n+1=eikπ2nwithk[[0,2n+11]]butbuteliminatevaluesofk/zk2=1.
Commented by maxmathsup by imad last updated on 13/Feb/19
P(x) =Π_(k=0_(z_k ≠+^(−1) ) ) ^(2^(n+1) −1) (x−z_k )
P(x)=k=0zk+12n+11(xzk)
Answered by mr W last updated on 12/Feb/19
1)  p(x)=(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2 )(1+x^2 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^4 )(1+x^4 )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^8 )...(1+x^2^n  )  ....  (1−x^2 )p(x)=(1−x^2^n  )...(1+x^2^n  )  (1−x^2 )p(x)=(1−x^2^(n+1)  )  ⇒p(x)=((1−x^2^(n+1)  )/(1−x^2 ))
1)p(x)=(1+x2)(1+x4)(1+x2n)(1x2)p(x)=(1x2)(1+x2)(1+x4)(1+x2n)(1x2)p(x)=(1x4)(1+x4)(1+x2n)(1x2)p(x)=(1x8)(1+x2n).(1x2)p(x)=(1x2n)(1+x2n)(1x2)p(x)=(1x2n+1)p(x)=1x2n+11x2
Commented by maxmathsup by imad last updated on 12/Feb/19
correct sir but x≠+^− 1
correctsirbutx+1

Leave a Reply

Your email address will not be published. Required fields are marked *