Menu Close

Let-p-x-1-x-2-2-x-1-x-3-2-x-1-x-6-2-x-2-x-3-2-x-2-x-4-2-x-2-x-6-2-x-5-x-6-2-1-i-lt-j-6-6-x-i-x-j-2-Th




Question Number 21316 by Tinkutara last updated on 20/Sep/17
Let p = (x_1  − x_2 )^2  + (x_1  − x_3 )^2  + .... +  (x_1  − x_6 )^2  + (x_2  − x_3 )^2  + (x_2  − x_4 )^2  +  .... + (x_2  − x_6 )^2  + .... + (x_5  − x_6 )^2  =  Σ_(1≤i<j≤6) ^6 (x_i  − x_j )^2 .  Then the maximum value of p if each  x_i  (i = 1, 2, ....., 6) has the value 0 and  1 is
$$\mathrm{Let}\:{p}\:=\:\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{2}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{3}} \right)^{\mathrm{2}} \:+\:….\:+ \\ $$$$\left({x}_{\mathrm{1}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{3}} \right)^{\mathrm{2}} \:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{4}} \right)^{\mathrm{2}} \:+ \\ $$$$….\:+\:\left({x}_{\mathrm{2}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:+\:….\:+\:\left({x}_{\mathrm{5}} \:−\:{x}_{\mathrm{6}} \right)^{\mathrm{2}} \:= \\ $$$$\underset{\mathrm{1}\leqslant{i}<{j}\leqslant\mathrm{6}} {\overset{\mathrm{6}} {\sum}}\left({x}_{{i}} \:−\:{x}_{{j}} \right)^{\mathrm{2}} . \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{each} \\ $$$${x}_{{i}} \:\left({i}\:=\:\mathrm{1},\:\mathrm{2},\:…..,\:\mathrm{6}\right)\:\mathrm{has}\:\mathrm{the}\:\mathrm{value}\:\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{1}\:\mathrm{is} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *