Menu Close

Let-p-x-be-a-quadratic-polynomial-such-that-for-distinct-and-p-and-p-prove-that-and-are-roots-of-p-p-x-x-0-Find-the-remaining-roots-




Question Number 61269 by alphaprime last updated on 31/May/19
Let p(x) be a quadratic polynomial such  that for distinct α and β ,  p(α) = α and p(β) =β  prove that α and β are roots of  p[p(x)]−x=0   Find the remaining roots .
Letp(x)beaquadraticpolynomialsuchthatfordistinctαandβ,p(α)=αandp(β)=βprovethatαandβarerootsofp[p(x)]x=0Findtheremainingroots.
Answered by ajfour last updated on 31/May/19
p(x)=a(x−h)^2 +k  α, β are roots of    a(r−h)^2 −r+k=0       ...(i)  p[p(x)]−x=a{a(x−h)^2 +k−h}^2 +k−x  And since from (i)       a(r−h)^2 +k=r     ....(ii)  p[p(r)]−r=a{a(x−r)^2 +k−h}^2 −r+k  using (ii) we get  p[p(r)]−r=a{r−h}^2 −r+k                       =0     using (i)  hence α,β are roots of p[p(x)]−x=0 .  Again  p[p(x)]−x=a{a(x−h)^2 +k−h}^2 +k−x  or  = a^3 (x−h)^4 +2a^2 (k−h)(x−h)^2                   +a(k−h)^2 +k−x    =a^3 x^4 −4a^3 hx^3 +[6a^3 h^2 +2a^2 (k−h)]x^2         −[4a^3 h^3 −+4a^2 h(k−h)+1]x   +a^3 h^4 +2a^2 (k−h)h^2 +a(k−h)^2 +k  Also lets assume  p[p(x)]−x=a^3 [x^2 −(2ah+1)x+h^2 +(k/a)](x−γ)(x−δ)    =a^3 {x^4 −(γ+δ+2ah+1)x^3            +[γδ+(2ah+1)(γ+δ)+h^2 +(k/a)]x^2             +(h^2 +(k/a))γδ}  comparing the two expressions  for  p[p(x)]−x  we conclude     γ+δ = 4h−2ah−1   γδ(h^2 +(k/a))=a^3 h^4 +2a^2 (k−h)h^2 +a(k−h)^2 +k  but from (i)       2h+(1/a)=α+β      h^2 +(k/a)=αβ  .....
p(x)=a(xh)2+kα,βarerootsofa(rh)2r+k=0(i)p[p(x)]x=a{a(xh)2+kh}2+kxAndsincefrom(i)a(rh)2+k=r.(ii)p[p(r)]r=a{a(xr)2+kh}2r+kusing(ii)wegetp[p(r)]r=a{rh}2r+k=0using(i)henceα,βarerootsofp[p(x)]x=0.Againp[p(x)]x=a{a(xh)2+kh}2+kxor=a3(xh)4+2a2(kh)(xh)2+a(kh)2+kx=a3x44a3hx3+[6a3h2+2a2(kh)]x2[4a3h3+4a2h(kh)+1]x+a3h4+2a2(kh)h2+a(kh)2+kAlsoletsassumep[p(x)]x=a3[x2(2ah+1)x+h2+ka](xγ)(xδ)=a3{x4(γ+δ+2ah+1)x3+[γδ+(2ah+1)(γ+δ)+h2+ka]x2+(h2+ka)γδ}comparingthetwoexpressionsforp[p(x)]xweconcludeγ+δ=4h2ah1γδ(h2+ka)=a3h4+2a2(kh)h2+a(kh)2+kbutfrom(i)2h+1a=α+βh2+ka=αβ..
Answered by perlman last updated on 31/May/19
p(x)=(x−a)(x−b)+x  p[p(x)]=(p(x)−a)(p(x)−b)+p(x)  pp(x) −x=0  ==> (p(x)−a)(p(x)−b)+p(x)−x=0  =((x−a)(x−b)+x−a)((x−a)(x−b)+x−b)+(x−a)(x−b)=0  (x−a)(x−b+1)(x−b)(x−a+1)+(x−a)(x−b)=0  (x−a)(x−b)[(x−b+1)(x−a+1)+1]=0  let solve (x−b+1)(x−a+1)+1=0  x^2 −(b+a−2)x+(a−1)(b−1)+1=0  Δ=(b+a−2)^2 −4(ab−a−b+2)=(b^2 +a^2 +4+2ba−4a−4b)−4ab+4a+4b−8  =b^2 +a^2 −2ab−4=(b−a−2)(b−a+2)  let b>a we can do this cause a#b  ===>Δ≥0<==>b≥a+2  if b≥a+2  X_(1.2) =(((b+a−2)+_− (√((b−a−2)(b−a+2))))/2)  if a<b<=a+2  X_(1.2) =(((b+a−2)+_− i(√((a+2−b)(b−a+2))))/2)  solution are if b∈]a+2;+∞[ solutions are  {b,a,(((b+a−2)+_− (√((b−a−2)(b−a+2))))/2)}  if b∈]a;a+2[ solutions are  {b,a,(((b+a−2)+_− i(√((b−a−2)(b−a+2))))/2)}
p(x)=(xa)(xb)+xp[p(x)]=(p(x)a)(p(x)b)+p(x)pp(x)x=0==>(p(x)a)(p(x)b)+p(x)x=0=((xa)(xb)+xa)((xa)(xb)+xb)+(xa)(xb)=0(xa)(xb+1)(xb)(xa+1)+(xa)(xb)=0(xa)(xb)[(xb+1)(xa+1)+1]=0letsolve(xb+1)(xa+1)+1=0x2(b+a2)x+(a1)(b1)+1=0Δ=(b+a2)24(abab+2)=(b2+a2+4+2ba4a4b)4ab+4a+4b8=b2+a22ab4=(ba2)(ba+2)You can't use 'macro parameter character #' in math mode===>Δ0<==>ba+2ifba+2X1.2=(b+a2)+(ba2)(ba+2)2ifa<b<=a+2X1.2=(b+a2)+i(a+2b)(ba+2)2solutionareifb]a+2;+[solutionsare{b,a,(b+a2)+(ba2)(ba+2)2}ifb]a;a+2[solutionsare{b,a,(b+a2)+i(ba2)(ba+2)2}
Commented by alphaprime last updated on 31/May/19
Tanmay sir generalized and solution is pretty nice , but yours is valid in entire domain , But comment something on both the solutions , any remarks you wanna add , please ...
Commented by perlman last updated on 31/May/19
i tack p(x)=(x−a)(x−b)+x  but generaly i must tack p=s(x−a)(x−b)+x  withe s constant
itackp(x)=(xa)(xb)+xbutgeneralyimusttackp=s(xa)(xb)+xwithesconstant
Commented by alphaprime last updated on 31/May/19
You mentioned it finally , In Tanmay sir's solution It's dependent on the parameter A you've left , which you haven't taken as arbitrary constant, so does it affect his or your solution or neither ones ?! it's amazing
Answered by tanmay last updated on 31/May/19
p(x)=A(x−α)(x−β)+x  p[p(x)]  =A[A(x−α)(x−β)+x−α](A(x−α)(x−β)+x−β]+    A(x−α)(x−β) +x−x  so   p[p(α)]=0  p[p(β)]=0  nxt part...  p[p(x)]  =A[(x−α){A(x−β)+1}][(x−β){A(x−α)+1}]+if      A(x−α)(x−β)  for other two root p[p(x)]=0  x−α=m    x−β=n     A[m(An+1)][n(Am+1]+Amn=0  (Amn+m)(Amn+n)+mn=0  A^2 (mn)^2 +Amn(m+n)+mn+mn=0  mn[A^2 (mn)+A(m+n)+2]=0  when A^2 (mn)+A(m+n)+2=0  A^2 (x−α)(x−β)+A(x−α+x−β)+2=0  A^2 (x^2 −xα−xβ+αβ)+2Ax−A(α+β)+2=0  x^2 (A^2 )+x(2A−A^2 α−A^2 β)+A^2 αβ−A(α+β)+2=0  (Ax+1)^2 +x(−A^2 α−A^2 β)+(A^2 αβ−Aα−Aβ+1)=0  (Ax+1)^2 −A^2 x(α+β)+Aα(Aβ−1)−(Aβ−1)=0  (Ax+1)^2 −A^2 x(α+β)+(Aα−1)(Aβ−1)=0  A^2 x^2 +2Ax+1−A^2 x(α+β)+(Aα−1)(Aβ−1)=0  A^2 x^2 −Ax(α+β−2)+(Aα−1)(Aβ−1)+1=0  x=((A(α+β−2)±(√(A^2 (α+β−2)^2 −4A^2 [(Aα−1)(Aβ−1)+1])))/(2A^2 ))  x=((α+β−2±(√((α+β−2)^2 −4[(Aα−1)(Aβ−1)+1)))/(2A))
p(x)=A(xα)(xβ)+xp[p(x)]=A[A(xα)(xβ)+xα](A(xα)(xβ)+xβ]+A(xα)(xβ)+xxsop[p(α)]=0p[p(β)]=0nxtpartp[p(x)]=A[(xα){A(xβ)+1}][(xβ){A(xα)+1}]+ifA(xα)(xβ)forothertworootp[p(x)]=0xα=mxβ=nA[m(An+1)][n(Am+1]+Amn=0(Amn+m)(Amn+n)+mn=0A2(mn)2+Amn(m+n)+mn+mn=0mn[A2(mn)+A(m+n)+2]=0whenA2(mn)+A(m+n)+2=0A2(xα)(xβ)+A(xα+xβ)+2=0A2(x2xαxβ+αβ)+2AxA(α+β)+2=0x2(A2)+x(2AA2αA2β)+A2αβA(α+β)+2=0(Ax+1)2+x(A2αA2β)+(A2αβAαAβ+1)=0(Ax+1)2A2x(α+β)+Aα(Aβ1)(Aβ1)=0(Ax+1)2A2x(α+β)+(Aα1)(Aβ1)=0A2x2+2Ax+1A2x(α+β)+(Aα1)(Aβ1)=0A2x2Ax(α+β2)+(Aα1)(Aβ1)+1=0x=A(α+β2)±A2(α+β2)24A2[(Aα1)(Aβ1)+1]2A2x=α+β2±(α+β2)24[(Aα1)(Aβ1)+12A
Commented by alphaprime last updated on 31/May/19
Very Nice cognizant
Commented by tanmay last updated on 31/May/19
thank you sir...
thankyousir
Commented by alphaprime last updated on 31/May/19
Question no.61211 , I seriously need your help sir , I can't even come on telegram due to issues, I'm seeking intense help , I don't expect much but there's a hope , Mjs sir is with me in the workspace and has promised to provide solution till Monday, I need you and other intellectuals to join him and resolve the system Indeed help me out please sir ��
Commented by ajfour last updated on 31/May/19
We too are glad to have you here  on the forum Sir. Your questions  are precious.
WetooaregladtohaveyouhereontheforumSir.Yourquestionsareprecious.
Commented by alphaprime last updated on 31/May/19
Sir I'm welcoming you in my workspace and please don't disappoint me , I'll love to notice presence of higher intellectual faculty , Just provide me your email ��

Leave a Reply

Your email address will not be published. Required fields are marked *