Menu Close

let-p-x-cos-2n-arccos-x-with-x-1-1-find-the-roots-of-p-x-and-factorize-p-x-




Question Number 34020 by prof Abdo imad last updated on 29/Apr/18
let p(x)=cos(2n arccos(x))  with x∈[−1,1]  find the roots of p(x) and factorize  p(x)
letp(x)=cos(2narccos(x))withx[1,1]findtherootsofp(x)andfactorizep(x)
Commented by math khazana by abdo last updated on 02/May/18
let put arccosx=t ⇔ x=cost  p(x)=0 ⇔ cos(2nt)=0 ⇔ 2nt =(π/2) +kπ   k∈ Z  ⇔ t_k  = (π/(4n)) +((kπ)/(2n))   k ∈Z    but card{t_k }<+∞ we can  prove that k∈[0,2n−1]] so the roots of p(x)are  x_k =cos(t_k ) =cos((π/(4n)) +((kπ)/(2n))) and  p(x)=λ Π_(k=0) ^(2n−1)  (x −cos((π/(4n)) +((kπ)/(2n)))) .
letputarccosx=tx=costp(x)=0cos(2nt)=02nt=π2+kπkZtk=π4n+kπ2nkZbutcard{tk}<+wecanprovethatk[0,2n1]]sotherootsofp(x)arexk=cos(tk)=cos(π4n+kπ2n)andp(x)=λk=02n1(xcos(π4n+kπ2n)).

Leave a Reply

Your email address will not be published. Required fields are marked *