Menu Close

let-p-x-x-10-1-1-find-roots-of-p-x-2-factorize-i-nside-C-x-p-x-3-factorize-inside-R-x-p-x-




Question Number 42195 by math khazana by abdo last updated on 20/Aug/18
let p(x)=x^(10) −1  1) find roots of p(x)  2) factorize i nside  C[x] p(x{  3) factorize inside R[x] p(x) .
letp(x)=x1011)findrootsofp(x)2)factorizeinsideC[x]p(x{3)factorizeinsideR[x]p(x).
Answered by maxmathsup by imad last updated on 21/Aug/18
1) p(z)=0 ⇔ z^(10) −1=0 ⇔ z^(10)  =1  if z=r e^(iθ)   we get r^(10) e^(i10θ)  =e^(i2kπ)  ⇒  r =1 and θ =((2kπ)/(10)) =((kπ)/5)  so the roots of p(x)are z_k =e^(i((kπ)/5))   with k∈[[0,9]]  2) p(x) =Π_(k=0) ^9 (x−z_k ) =Π_(k=0) ^9 (x−e^((ikπ)/5) )  3) generally let decmpose q(x) =x^(2n)  −1 the roots are z_k =e^((ikn)/n)  with  k ∈[[0,2n−1]] ⇒q(x)=Π_(k=0) ^(2n−1) (x−e^((ikπ)/n) )  but z_0 =1  z_1 =e^((iπ)/n)   z_2 =e^((i2π)/n)        z_(n−1) =e^((i(n−1)π)/n)   z_n =−1    z_(n+1) =e^((i(n+1)π)/n)    ...z_(2n−1) =e^((i(2n−1)π)/n)   ⇒z_1 ^−   =e^(−((iπ)/n))  =e^(2iπ−((iπ)/n))  = e^(i(((2n−1)π)/n))   =z_(2n−1) ^−   .....⇒z_(2n−p)  =z_p ^−  ⇒  q(x) =(x^2 −1) Π_(k=1) ^(n−1) (x−z_k )(x−z_k ^− )=(x^2 −1)Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x +1)  for n=5  we get  p(x)=(x^2 −1)Π_(k=1) ^4 (x^2  −2cos(((kπ)/5))x +1)  =(x^2  −1)(x^2  −2cos((π/5))x +1)(x^2  −2cos(((2π)/5))x+1)(x^2  −2cos(((3π)/5))x+1)(x^2 −2cos(((4π)/5))x+1).  =(x^2 −2cos((π/5))x+1)(x^2  +2cos((π/5))x+1)(x^2  −2cos(((2π)/5))x+1)(x^2  +2cos(((2π)/5))x+1).
1)p(z)=0z101=0z10=1ifz=reiθwegetr10ei10θ=ei2kπr=1andθ=2kπ10=kπ5sotherootsofp(x)arezk=eikπ5withk[[0,9]]2)p(x)=k=09(xzk)=k=09(xeikπ5)3)generallyletdecmposeq(x)=x2n1therootsarezk=eiknnwithk[[0,2n1]]q(x)=k=02n1(xeikπn)butz0=1z1=eiπnz2=ei2πnzn1=ei(n1)πnzn=1zn+1=ei(n+1)πnz2n1=ei(2n1)πnz1=eiπn=e2iπiπn=ei(2n1)πn=z2n1..z2np=zpq(x)=(x21)k=1n1(xzk)(xzk)=(x21)k=1n1(x22cos(kπn)x+1)forn=5wegetp(x)=(x21)k=14(x22cos(kπ5)x+1)=(x21)(x22cos(π5)x+1)(x22cos(2π5)x+1)(x22cos(3π5)x+1)(x22cos(4π5)x+1).=(x22cos(π5)x+1)(x2+2cos(π5)x+1)(x22cos(2π5)x+1)(x2+2cos(2π5)x+1).
Commented by maxmathsup by imad last updated on 21/Aug/18
p(x)=(x^2 −1)(x^2 −2cos((π/5))x+1)(x^2  +2cos((π/5))x+1)(x^2  −2cos(((2π)/5))x+1)(x^2  +2cos(((2π)/5))x+1).
p(x)=(x21)(x22cos(π5)x+1)(x2+2cos(π5)x+1)(x22cos(2π5)x+1)(x2+2cos(2π5)x+1).

Leave a Reply

Your email address will not be published. Required fields are marked *