Menu Close

let-p-x-x-2n-x-n-1-1-determine-the-roots-of-p-x-2-factorize-inside-C-x-the-polynom-p-x-3-solve-p-x-0-and-p-x-2-




Question Number 49647 by maxmathsup by imad last updated on 08/Dec/18
let p(x) =x^(2n)  −x^n  +1  1) determine the roots of p(x)  2) factorize inside C[x] the polynom p(x) .  3)solve p(x)=0  and p(x) =2
letp(x)=x2nxn+11)determinetherootsofp(x)2)factorizeinsideC[x]thepolynomp(x).3)solvep(x)=0andp(x)=2
Commented by maxmathsup by imad last updated on 08/Dec/18
let put x^n  =t ⇒x^(2n) −x^n  +1 =t^2 −t +1   Δ = 1−4 =−3 =(i(√3))^2  ⇒t_1 = ((1+i(√3))/2)  and t_2 =((1−i(√3))/2)  ⇒t_1 =e^((iπ)/3)   and t_2 =e^(−((iπ)/3))  ⇒p(x)=(x^n  −e^((iπ)/3) )(x^n −e^(−((iπ)/3)) )so p(x)=0 ⇔x^n =e^((iπ)/3)   or x^n =e^(−((iπ)/3))      let solve x^n =e^((iπ)/3)    x=r e^(iθ)  ⇒r^n  e^(inθ) =e^((iπ)/3)  ⇒r=1 and nθ=(π/3)+2kπ ⇒  θ_k =(π/(3n)) +((2kπ)/n)  with k∈[[0,n−1]]  ⇒ x_k =e^(i((π/(3n))+((2kπ)/n)))   also x^n =e^(−((iπ)/3))   give t_k =e^(i(−(π/(3n))+((2kπ)/n)))    k∈[[0,n−1]] so the roots of p(x) are  x_k  and t_k .  2)p(x) =Π_(k=0) ^(n−1) (x−x_k ) Π_(k=0) ^(n−1) (x−t_k )  =Π_(k=0) ^(n−1) (x−x_k )(x−x_k ^− )    with x_k = e^(i((π/(3n))+((2kπ)/n)))
letputxn=tx2nxn+1=t2t+1Δ=14=3=(i3)2t1=1+i32andt2=1i32t1=eiπ3andt2=eiπ3p(x)=(xneiπ3)(xneiπ3)sop(x)=0xn=eiπ3orxn=eiπ3letsolvexn=eiπ3x=reiθrneinθ=eiπ3r=1andnθ=π3+2kπθk=π3n+2kπnwithk[[0,n1]]xk=ei(π3n+2kπn)alsoxn=eiπ3givetk=ei(π3n+2kπn)k[[0,n1]]sotherootsofp(x)arexkandtk.2)p(x)=k=0n1(xxk)k=0n1(xtk)=k=0n1(xxk)(xxk)withxk=ei(π3n+2kπn)
Commented by maxmathsup by imad last updated on 08/Dec/18
3) p(x)=0  ⇔ x =x_k  or x =t_k   ⇔ x =e^(i((π/(3n))+((2kπ)/n)) ) or x =e^(i(−(π/(3n)) +((2kπ)/n)))   k∈{0,1,2,...,n−1}
3)p(x)=0x=xkorx=tkx=ei(π3n+2kπn)orx=ei(π3n+2kπn)k{0,1,2,,n1}
Commented by maxmathsup by imad last updated on 08/Dec/18
p(x)=2 ⇒x^(2n) −x^n  +1=2 ⇒x^(2n) −x^n −1 =0  Δ =1+4 =5 ⇒x^n  =((1+(√5))/2) or x^n  =((1−(√5))/2)  x^n  =a    (a=((1+(√5))/2))  ⇒ x^n  =(^n (√a))^n  ⇒ ((x/((^n (√a)))))^n  =e^(i(2kπ))  ⇒  (x/((^n (√a)))) = e^((i2kπ)/n)  ⇒x_k =^n (√a) e^((i2kπ)/n)     with k from[[0,n−1]]  also x^n =((1−(√5))/2)  (=α)  ⇒x =^n (√α)e^((i2kπ)/n)   with 0≤k≤n−1
p(x)=2x2nxn+1=2x2nxn1=0Δ=1+4=5xn=1+52orxn=152xn=a(a=1+52)xn=(na)n(x(na))n=ei(2kπ)x(na)=ei2kπnxk=naei2kπnwithkfrom[[0,n1]]alsoxn=152(=α)x=nαei2kπnwith0kn1
Answered by Smail last updated on 08/Dec/18
1)  x^(2n) −x^n +1=(x^n )^2 −x^n +1=(x^n +j)(x^n +j^2 )  with j=e^(i((2π)/3))   x^n =−j=e^(i((5π)/3))  or  x^n =−j^2 =e^(i(π/3))   x=e^(i(π/(3n))(5+6k) )  or  x=e^(i(π/(3n))(6k+1))   with k=(0,1,2,...,n−1)  2)  p(x)=Π_(k=0) ^(n−1) (x−e^(i(π/(3n))(6k+5)) )(x−e^(i(π/(3n))(6k+1)) )  3)  p(x)=0 when x=e^(i(π/(3n))(6k+5))  or x=e^(i(π/(3n))(6k+1))   p(x)=2 ⇔x^(2n) −x^n +1=2  x^(2n) −x^n −1=0  Δ=1+4=5  x^n =((1+_− (√5))/2)=a  x=(a)^(1/n) e^((2ikπ)/n) =(((1+_− (√5))/2))^(1/n) e^((2ikπ)/n)
1)x2nxn+1=(xn)2xn+1=(xn+j)(xn+j2)withj=ei2π3xn=j=ei5π3orxn=j2=eiπ3x=eiπ3n(5+6k)orx=eiπ3n(6k+1)withk=(0,1,2,,n1)2)p(x)=n1k=0(xeiπ3n(6k+5))(xeiπ3n(6k+1))3)p(x)=0whenx=eiπ3n(6k+5)orx=eiπ3n(6k+1)p(x)=2x2nxn+1=2x2nxn1=0Δ=1+4=5xn=1+52=ax=ane2ikπn=1+52ne2ikπn
Commented by afachri last updated on 08/Dec/18
pardon me Mr. Smail, may i ask you a question    ? cause i am a little bit confused, i am  a new beginner. question :  can we write down x^n  to  x^n  = ((1 ± i(√3^ ))/2)   ? and would you mind   explain to me why j = e^(i((2π)/3))   ??  Thank You, Sir
pardonmeMr.Smail,mayiaskyouaquestion?causeiamalittlebitconfused,iamanewbeginner.question:canwewritedownxntoxn=1±i32?andwouldyoumindexplaintomewhyj=ei2π3??ThankYou,Sir
Commented by Smail last updated on 08/Dec/18
Of course you can.  j=e^(i((2π)/3))  is just a simple way to write the solution.  ((1+i(√3))/2)=(1/2)+i((√3)/2)=cos((π/3))+isin((π/3))  =e^(i(π/3)) =e^(i(((2π)/3)−π)) =e^(−iπ) e^(i((2π)/3)) =−1×e^(i((2π)/3)) =−e^(i((2π)/3))   =−j  with  j^3 =1
Ofcourseyoucan.j=ei2π3isjustasimplewaytowritethesolution.1+i32=12+i32=cos(π3)+isin(π3)=eiπ3=ei(2π3π)=eiπei2π3=1×ei2π3=ei2π3=jwithj3=1
Commented by Smail last updated on 08/Dec/18
Also   j^2 +j+1=0
Alsoj2+j+1=0
Commented by afachri last updated on 09/Dec/18
thank you sir, i got it.  thank you very much :)
thankyousir,igotit.thankyouverymuch:)
Commented by Smail last updated on 09/Dec/18
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *