Question Number 39636 by math khazana by abdo last updated on 09/Jul/18
$${let}\:{P}_{\alpha} \left({x}\right)\:={x}^{\mathrm{3}} \:\:+\mathrm{2}\alpha\:{x}\:−\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{the}\:{roots}\:{of}\:{P}_{\alpha} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{the}\:{roots}\:{of}\:\:{P}_{−\mathrm{1}} \\ $$
Answered by ajfour last updated on 09/Jul/18
$${let}\:\:{x}=\:{u}+{v} \\ $$$$\Rightarrow\:\:\left({u}+{v}\right)^{\mathrm{3}} +\mathrm{2}\alpha\left({u}+{v}\right)−\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\left({u}+{v}\right)\left(\mathrm{3}{uv}+\mathrm{2}\alpha\right)−\mathrm{3}=\mathrm{0} \\ $$$$\:\:{Further}\:{let}\:\left({we}\:{can}..\right)\:{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{3}{uv}+\mathrm{2}\alpha\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{u}^{\mathrm{3}} {v}^{\mathrm{3}} \:=\:−\frac{\mathrm{8}\alpha^{\mathrm{3}} }{\mathrm{27}}\:\:\:\: \\ $$$${Then}\:\:\:\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} \:=\:\mathrm{3} \\ $$$$\:\:\:\:{u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{then}\:{roots}\:{of}\:{eq}. \\ $$$$\:\:\:\:\:\:\:\:{z}^{\mathrm{2}} −\mathrm{3}{z}−\frac{\mathrm{8}\alpha^{\mathrm{3}} }{\mathrm{27}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:{u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:=\:\frac{\mathrm{3}\pm\sqrt{\mathrm{9}+\frac{\mathrm{32}\alpha^{\mathrm{3}} }{\mathrm{27}}}}{\mathrm{2}} \\ $$$${As}\:\:\:\:\:\:\:\:\:{x}\:=\:{u}+{v} \\ $$$$\Rightarrow\:\:{x}\left(\alpha\right)\:=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{8}\alpha^{\mathrm{3}} }{\mathrm{27}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}−\sqrt{\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{8}\alpha^{\mathrm{3}} }{\mathrm{27}}}}\: \\ $$$$\:\:\:\:{x}\mid_{\alpha=−\mathrm{1}} \:=\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\frac{\mathrm{211}}{\mathrm{108}}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}}{\mathrm{2}}−\sqrt{\frac{\mathrm{211}}{\mathrm{108}}}}\:\:. \\ $$
Commented by MrW3 last updated on 09/Jul/18
$${Ajfour}\:{sir}\:{is}\:{now}\:{also}\:{a}\:{specalist}\:{for} \\ $$$${cubic}\:{equations},\:{on}\:{side}\:{of}\:{MJS}\:{sir}. \\ $$
Commented by ajfour last updated on 09/Jul/18
$${You}\:{taught}\:{me}\:{how},\:{sometime}\:{back}.. \\ $$