Menu Close

let-P-x-x-3-2-x-3-1-determine-the-roots-of-P-2-determine-the-roots-of-P-1-




Question Number 39636 by math khazana by abdo last updated on 09/Jul/18
let P_α (x) =x^3   +2α x −3  1) determine the roots of P_α   2) determine the roots of  P_(−1)
letPα(x)=x3+2αx31)determinetherootsofPα2)determinetherootsofP1
Answered by ajfour last updated on 09/Jul/18
let  x= u+v  ⇒  (u+v)^3 +2α(u+v)−3=0  ⇒ u^3 +v^3 +(u+v)(3uv+2α)−3=0    Further let (we can..) that         3uv+2α = 0  ⇒   u^3 v^3  = −((8α^3 )/(27))      Then     u^3 +v^3  = 3      u^3 , v^3  are then roots of eq.          z^2 −3z−((8α^3 )/(27)) = 0  ⇒   u^3 , v^3  = ((3±(√(9+((32α^3 )/(27)))))/2)  As         x = u+v  ⇒  x(α) = (((3/2)+(√((9/4)+((8α^3 )/(27))))))^(1/3)                       +(((3/2)−(√((9/4)+((8α^3 )/(27))))))^(1/3)        x∣_(α=−1)  = (((3/2)+(√((211)/(108)))))^(1/3)                              +(((3/2)−(√((211)/(108)))))^(1/3)   .
letx=u+v(u+v)3+2α(u+v)3=0u3+v3+(u+v)(3uv+2α)3=0Furtherlet(wecan..)that3uv+2α=0u3v3=8α327Thenu3+v3=3u3,v3arethenrootsofeq.z23z8α327=0u3,v3=3±9+32α3272Asx=u+vx(α)=32+94+8α3273+3294+8α3273xα=1=32+2111083+322111083.
Commented by MrW3 last updated on 09/Jul/18
Ajfour sir is now also a specalist for  cubic equations, on side of MJS sir.
Ajfoursirisnowalsoaspecalistforcubicequations,onsideofMJSsir.
Commented by ajfour last updated on 09/Jul/18
You taught me how, sometime back..
Youtaughtmehow,sometimeback..

Leave a Reply

Your email address will not be published. Required fields are marked *