Menu Close

let-p-x-x-3-3x-4-find-and-




Question Number 39879 by Rio Mike last updated on 12/Jul/18
let   p(x)= x^3  + 3x − 4  find α+β and   αβ
$${let}\: \\ $$$${p}\left({x}\right)=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}\:−\:\mathrm{4} \\ $$$${find}\:\alpha+\beta\:{and}\: \\ $$$$\alpha\beta \\ $$$$ \\ $$$$ \\ $$
Answered by MrW3 last updated on 12/Jul/18
p(x)= x^3  + 3x − 4=(x−1)(x^2 +Ax+B)  =x^3 +(A−1)x^2 +(B−A)x−B  ⇒B=4  ⇒A−1=0⇒A=1  ⇒B−A=4−1=3=^! 3    p(x)= x^3  + 3x − 4=(x−1)(x^2 +x+4)  =(x−1)(x−α)(x−β)  ⇒α+β=−1  ⇒αβ=4  is this what you mean?
$${p}\left({x}\right)=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}\:−\:\mathrm{4}=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{Ax}+{B}\right) \\ $$$$={x}^{\mathrm{3}} +\left({A}−\mathrm{1}\right){x}^{\mathrm{2}} +\left({B}−{A}\right){x}−{B} \\ $$$$\Rightarrow{B}=\mathrm{4} \\ $$$$\Rightarrow{A}−\mathrm{1}=\mathrm{0}\Rightarrow{A}=\mathrm{1} \\ $$$$\Rightarrow{B}−{A}=\mathrm{4}−\mathrm{1}=\mathrm{3}\overset{!} {=}\mathrm{3} \\ $$$$ \\ $$$${p}\left({x}\right)=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}\:−\:\mathrm{4}=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{4}\right) \\ $$$$=\left({x}−\mathrm{1}\right)\left({x}−\alpha\right)\left({x}−\beta\right) \\ $$$$\Rightarrow\alpha+\beta=−\mathrm{1} \\ $$$$\Rightarrow\alpha\beta=\mathrm{4} \\ $$$${is}\:{this}\:{what}\:{you}\:{mean}? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jul/18
x^3 +3x−3−1  x^3 −1+3(x−1)  (x−1)(x^2 +x+1)+3(x−1)  (x−1)(x^2 +x+4)  one root is 1  another two α and β  α+β=−1   ∝β=4
$${x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{3}−\mathrm{1} \\ $$$${x}^{\mathrm{3}} −\mathrm{1}+\mathrm{3}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)+\mathrm{3}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{4}\right) \\ $$$${one}\:{root}\:{is}\:\mathrm{1} \\ $$$${another}\:{two}\:\alpha\:{and}\:\beta \\ $$$$\alpha+\beta=−\mathrm{1}\:\:\:\propto\beta=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *