Menu Close

let-p-x-x-3-px-q-1-prove-that-p-have-double-roots-4p-3-27q-2-0-3-let-suppose-p-have-3-real-roots-differnts-prove-that-4p-3-27q-2-lt-0-




Question Number 30220 by abdo imad last updated on 18/Feb/18
let p(x)= x^3  px +q  1) prove that p have double roots⇔ 4p^3  +27q^2 =0  3) let suppose p have 3 real roots differnts prove that  4p^3  +27q^2  <0.
$${let}\:{p}\left({x}\right)=\:{x}^{\mathrm{3}} \:{px}\:+{q} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{p}\:{have}\:{double}\:{roots}\Leftrightarrow\:\mathrm{4}{p}^{\mathrm{3}} \:+\mathrm{27}{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{suppose}\:{p}\:{have}\:\mathrm{3}\:{real}\:{roots}\:{differnts}\:{prove}\:{that} \\ $$$$\mathrm{4}{p}^{\mathrm{3}} \:+\mathrm{27}{q}^{\mathrm{2}} \:<\mathrm{0}. \\ $$
Commented by abdo imad last updated on 18/Feb/18
p(x)=x^3  +px +q
$${p}\left({x}\right)={x}^{\mathrm{3}} \:+{px}\:+{q}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *