Menu Close

let-p-x-x-6-ax-5-bx-4-cx-3-dx-2-ex-f-be-a-polynomial-function-such-that-p-1-1-p-2-2-p-3-3-p-4-4-p-5-5-p-6-6-then-find-p-7-




Question Number 175624 by infinityaction last updated on 04/Sep/22
let p(x) = x^6 +ax^5 +bx^4 +cx^3 +dx^2 +ex+f    be a polynomial function such    that  p(1) = 1 ; p(2) = 2 ;  p(3) = 3    p(4) = 4 ; p(5) = 5 ; p(6) = 6  then    find  p(7) = ?
letp(x)=x6+ax5+bx4+cx3+dx2+ex+fbeapolynomialfunctionsuchthatp(1)=1;p(2)=2;p(3)=3p(4)=4;p(5)=5;p(6)=6thenfindp(7)=?
Answered by cortano1 last updated on 04/Sep/22
p(x)=(x−1)(x−2)(x−3)(x−4)(x−5)(x−6)+x  p(7)=6.5.4.3.2.1+7=6!+7            = 727
p(x)=(x1)(x2)(x3)(x4)(x5)(x6)+xp(7)=6.5.4.3.2.1+7=6!+7=727
Commented by BaliramKumar last updated on 05/Sep/22
p(n) = ?                   [ n > 6 ]
p(n)=?[n>6]
Answered by leodera last updated on 04/Sep/22
  p(x) = (x−1)(x−2)(x−3)(x−4)(x−5)(x−6)+x  p(7) = 6! + 7 = 720+7 = 727
p(x)=(x1)(x2)(x3)(x4)(x5)(x6)+xp(7)=6!+7=720+7=727
Answered by floor(10²Eta[1]) last updated on 04/Sep/22
p(1)=1⇒p(x)=(x−1)a(x)+1  p(2)=a(2)+1=2⇒a(2)=1⇒a(x)=(x−2)b(x)+1  p(x)=(x−1)((x−2)b(x)+1)+1  p(3)=2(b(3)+1)+1=3⇒b(3)=0⇒b(x)=(x−3)c(x)  p(x)=(x−1)((x−2)(x−3)c(x)+1)+1  p(4)=3(2c(4)+1)+1=4⇒c(4)=0⇒c(x)=(x−4)d(x)  ⇒p(x)=(x−1)[(x−2)(x−3)(x−4)d(x)+1)+1  p(5)=4[3.2d(5)+1]+1=5⇒d(5)=0⇒d(x)=(x−5)e(x)  p(x)=(x−1)[(x−2)(x−3)(x−4)(x−5)e(x)+1]+1  p(6)=5[4.3.2e(6)+1]+1=6⇒e(6)=0⇒e(x)=(x−6)C  ⇒p(x)=(x−1)[(x−2)(x−3)(x−4)(x−5)(x−6)C+1]+1  =(x−1)(x−2)(x−3)(x−4)(x−5)(x−6)C+x  p(7)=6!C+7=720C+7, C∈R^∗   but C=1 because p(x)=x^6 +ax^5 +...  ⇒p(7)=727
p(1)=1p(x)=(x1)a(x)+1p(2)=a(2)+1=2a(2)=1a(x)=(x2)b(x)+1p(x)=(x1)((x2)b(x)+1)+1p(3)=2(b(3)+1)+1=3b(3)=0b(x)=(x3)c(x)p(x)=(x1)((x2)(x3)c(x)+1)+1p(4)=3(2c(4)+1)+1=4c(4)=0c(x)=(x4)d(x)p(x)=(x1)[(x2)(x3)(x4)d(x)+1)+1p(5)=4[3.2d(5)+1]+1=5d(5)=0d(x)=(x5)e(x)p(x)=(x1)[(x2)(x3)(x4)(x5)e(x)+1]+1p(6)=5[4.3.2e(6)+1]+1=6e(6)=0e(x)=(x6)Cp(x)=(x1)[(x2)(x3)(x4)(x5)(x6)C+1]+1=(x1)(x2)(x3)(x4)(x5)(x6)C+xp(7)=6!C+7=720C+7,CRbutC=1becausep(x)=x6+ax5+p(7)=727
Commented by infinityaction last updated on 04/Sep/22
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *