Question Number 61651 by maxmathsup by imad last updated on 05/Jun/19
$${let}\:{p}\left({x}\right)\:=\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} +\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){decompose}\:{inside}\:{C}\left[{x}\right]\:\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}\: \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$$\left.\mathrm{1}\right)\:\:{we}\:{have}\:{P}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left({i}\sqrt{\mathrm{3}}\right)^{{k}} \:{x}^{{n}−{k}} \:+\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−{i}\sqrt{\mathrm{3}}\right)^{{k}} \:{x}^{{n}−{k}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left\{\:{i}^{{k}} \:+\left(−{i}\right)^{{k}} \right)\mathrm{3}^{\frac{{k}}{\mathrm{2}}} \:{x}^{{n}−{k}} \:=\sum_{{k}=\mathrm{2}{p}} \left(…\right)\:+\sum_{{k}=\mathrm{2}{p}+\mathrm{1}} \left(…\right) \\ $$$$=\mathrm{2}\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}} \:\:\left(−\mathrm{1}\right)^{{p}} \:\mathrm{3}^{{p}} \:{x}^{{n}−\mathrm{2}{p}} \:=\:\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \left(−\mathrm{3}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} \:{x}^{{n}−\mathrm{2}{p}} \\ $$$${another}\:{way}\:{with}\:{arctan} \\ $$$${we}\:{have}\:{P}\left({x}\right)\:=\:\mathrm{2}\:{Re}\left(\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} \right)\:\:\:{but}\:\:\:\:\mid{x}+{i}\sqrt{\mathrm{3}}\mid\:=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}\:\Rightarrow \\ $$$${x}+{i}\sqrt{\mathrm{3}}=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}\left(\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}}\:+{i}\:\frac{\sqrt{\mathrm{3}}}{\:\sqrt{{x}^{\mathrm{2}\:} +\mathrm{3}}}\right)\:={r}\:{e}^{{i}\theta} \:\Rightarrow{r}\:=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}\:\:{and}\:\:{tan}\theta\:=\frac{\sqrt{\mathrm{3}}}{{x}} \\ $$$$\left(\:\:\:{we}\:{suppose}\:{x}\neq\mathrm{0}\right)\:\Rightarrow\:\theta\:{arctan}\left(\frac{\sqrt{\mathrm{3}}}{{x}}\right)\:\Rightarrow{x}+{i}\sqrt{\mathrm{3}}=\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}\:{e}^{{iarctan}\left(\frac{\sqrt{\mathrm{3}}}{{x}}\right)} \:\Rightarrow \\ $$$$\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} \:=\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\frac{{n}}{\mathrm{2}}} \:\:{e}^{{in}\:{arctan}\left(\frac{\sqrt{\mathrm{3}}}{{x}}\right)} \:\Rightarrow{P}\left({x}\right)\:=\mathrm{2}\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\frac{{n}}{\mathrm{2}}} \:{cos}\left({narctan}\left(\frac{\sqrt{\mathrm{3}}}{{x}}\right)\right) \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$$\left.\mathrm{2}\right)\:{P}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\:\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:=−\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\Leftrightarrow\left(\frac{{x}−{i}\sqrt{\mathrm{3}}}{{x}+{i}\sqrt{\mathrm{3}}}\right)^{{n}} \:=−\mathrm{1}\:\Leftrightarrow\:{Z}^{{n}} \:=−\mathrm{1}\:{with} \\ $$$${Z}\:=\frac{{x}−{i}\sqrt{\mathrm{3}}}{{x}+{i}\sqrt{\mathrm{3}}}\:\Rightarrow{Zx}+{i}\sqrt{\mathrm{3}}{Z}\:={x}−{i}\sqrt{\mathrm{3}}\:\Rightarrow\left({Z}−\mathrm{1}\right){x}\:=−{i}\sqrt{\mathrm{3}}{Z}\:−{i}\sqrt{\mathrm{3}}\:\Rightarrow \\ $$$$\left({Z}−\mathrm{1}\right){x}\:=−{i}\sqrt{\mathrm{3}}\left({Z}+\mathrm{1}\right)\:\Rightarrow{x}\:={i}\sqrt{\mathrm{3}}\frac{\mathrm{1}+{Z}}{\mathrm{1}−{Z}} \\ $$$${Z}^{{n}} \:=−\mathrm{1}\:\Rightarrow\:{Z}^{{n}} \:={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow{Z}_{{k}} ={e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \:\:\:{and}\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\Rightarrow{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$${are}\:{x}_{{k}} ={i}\sqrt{\mathrm{3}}\:\:\frac{\mathrm{1}+{e}^{\frac{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} }{\mathrm{1}−{e}^{\frac{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} }\:\:{let}\:{skmplify}\:\:{x}_{{k}} \\ $$$${x}_{{k}} ={i}\sqrt{\mathrm{3}}\frac{\mathrm{1}+{cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{{n}}\right)+\mathrm{2}{i}\:{sin}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right){cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)}{\left.\mathrm{1}−{cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{{n}}\right)−\mathrm{2}{i}\:{sin}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right){cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)} \\ $$$$={i}\sqrt{\mathrm{3}}\frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)\:+\mathrm{2}{i}\:{sin}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right){cos}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)}{\left.\mathrm{2}{sin}^{\mathrm{2}} \left({l}\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}−\mathrm{2}{i}\:{sin}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)\:{cos}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}} \\ $$$$={i}\sqrt{\mathrm{3}}\frac{{cos}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\left({e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}} \right)}{−{isin}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\left(\:{e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}} \right)}\:=−\sqrt{\mathrm{3}}{cotan}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)\:\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$$× \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$$\left.\mathrm{3}\right)\:{P}\left({x}\right)\:=\lambda\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{Z}_{{k}} \right)\:=\lambda\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}+\sqrt{\mathrm{3}}{cotan}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}{n}}\right)\right) \\ $$$$\lambda\:{is}\:{thedominent}\:{coefficient}\:\:{of}\:{P}\left({x}\right). \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
$$\left.\mathrm{4}\right)\:{we}\:{have}\:{P}\left({x}\right)\:=\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \left(−\mathrm{3}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} \:{x}^{{n}−\mathrm{2}{p}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{P}\left({x}\right){dx}\:=\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \left(−\mathrm{3}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} \:\:\:\left[\frac{\mathrm{1}}{{n}−\mathrm{2}{p}\:+\mathrm{1}}{x}^{{n}−\mathrm{2}{p}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\:\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\:\:\frac{\left(−\mathrm{3}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}} }{{n}−\mathrm{2}{p}+\mathrm{1}}\:. \\ $$