Menu Close

let-p-x-x-i-n-x-i-n-with-i-2-1-1-find-p-x-at-form-a-k-x-k-2-find-the-roots-of-p-x-3-factorize-inside-C-x-p-x-4-factorize-inside-R-x-the-polynom-p-x-5-decompose-the-fraction-F-




Question Number 46425 by maxmathsup by imad last updated on 25/Oct/18
let p(x)=(x+i)^n −(x−i)^n    with i^2 =−1  1) find p(x) at form Σ a_k x^k   2) find the roots of p(x)  3) factorize inside C[x] p(x)  4) factorize inside R[x] the polynom p(x)  5) decompose the fraction F(x)=(1/(p(x)))
letp(x)=(x+i)n(xi)nwithi2=11)findp(x)atformΣakxk2)findtherootsofp(x)3)factorizeinsideC[x]p(x)4)factorizeinsideR[x]thepolynomp(x)5)decomposethefractionF(x)=1p(x)
Commented by maxmathsup by imad last updated on 18/Nov/18
1)we have P(x)=Σ_(k=0) ^n  C_n ^k  i^k x^(n−k)  −Σ_(k=0) ^n  C_n ^k  (−i)^k  x^(n−k)   =Σ_(k=0) ^n  C_n ^k (i^k −(−i)^k )x^(n−k)  =Σ_(k=2p )   (...) +Σ_(k=2p+1) (...)  =Σ_(p=0) ^([((n−1)/2)]) C_n ^(2p+1) (i^(2p+1) −(−i)^(2p+1) )x^(n−2p−1)   =Σ_(p=0) ^([((n−1)/2)])   2i (−1)^p  C_n ^(2p+1)  x^(n−2p−1)  =2i Σ_(p=0) ^([((n−1)/2)])  (−1)^p  C_n ^(2p+1)  x^(n−2p−1) .
1)wehaveP(x)=k=0nCnkikxnkk=0nCnk(i)kxnk=k=0nCnk(ik(i)k)xnk=k=2p()+k=2p+1()=p=0[n12]Cn2p+1(i2p+1(i)2p+1)xn2p1=p=0[n12]2i(1)pCn2p+1xn2p1=2ip=0[n12](1)pCn2p+1xn2p1.
Commented by maxmathsup by imad last updated on 18/Nov/18
2) roots of P(x)  P(x)=0 ⇔(x+i)^n =(x−i)^n  ⇔(((x+i)/(x−i)))^n  =1  ⇒((x+i)/(x−i))=e^((i2kπ)/n)    k∈[[1,n−1]]  ⇒x+i =(x−i)α_k       (α_k =e^((i2k)/n) ) ⇒(1−α_k )x=−i−iα_k  ⇒x_k =−i((1+α_k )/(1−α_k ))  x_k =−i ((1+e^((i2kπ)/n) )/(1−e^((i2kπ)/n) )) =−i ((1+cos(((2kπ)/n))+i sin(((2kπ)/n)))/(1−cos(((2kπ)/n))−i sin(((2kπ)/n))))  =−i ((2cos^2 (((kπ)/n)) +2i sin(((kπ)/n))cos(((kπ)/n)))/(2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n))))  =−i ((cos(((kπ)/n))e^((ikπ)/n) )/(−isin(((kπ)/n))e^((ikπ)/n) )) =cotan(((kπ)/n))  so the roots of P(x) are  x_k =cotan(((kπ)/n))  with k∈[[1,n−1]].
2)rootsofP(x)P(x)=0(x+i)n=(xi)n(x+ixi)n=1x+ixi=ei2kπnk[[1,n1]]x+i=(xi)αk(αk=ei2kn)(1αk)x=iiαkxk=i1+αk1αkxk=i1+ei2kπn1ei2kπn=i1+cos(2kπn)+isin(2kπn)1cos(2kπn)isin(2kπn)=i2cos2(kπn)+2isin(kπn)cos(kπn)2sin2(kπn)2isin(kπn)cos(kπn)=icos(kπn)eikπnisin(kπn)eikπn=cotan(kπn)sotherootsofP(x)arexk=cotan(kπn)withk[[1,n1]].

Leave a Reply

Your email address will not be published. Required fields are marked *