Menu Close

let-p-x-x-n-4-2x-n-n-1-prove-that-p-k-0-p-k-2-0-for-all-k-1-n-1-2-prove-that-m-N-p-m-0-and-p-m-2-are-integrs-




Question Number 93414 by abdomathmax last updated on 13/May/20
let p(x)=((x^n (4−2x)^n )/(n!))  1) prove that  p^((k)) (0)=p^((k)) (2)=0 for all k∈[1,n−1]  2)  prove that  ∀m∈N    p^((m)) (0) and p^((m)) (2) are integrs
$${let}\:{p}\left({x}\right)=\frac{{x}^{{n}} \left(\mathrm{4}−\mathrm{2}{x}\right)^{{n}} }{{n}!} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:{p}^{\left({k}\right)} \left(\mathrm{0}\right)={p}^{\left({k}\right)} \left(\mathrm{2}\right)=\mathrm{0}\:{for}\:{all}\:{k}\in\left[\mathrm{1},{n}−\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right)\:\:{prove}\:{that}\:\:\forall{m}\in{N}\:\:\:\:{p}^{\left({m}\right)} \left(\mathrm{0}\right)\:{and}\:{p}^{\left({m}\right)} \left(\mathrm{2}\right)\:{are}\:{integrs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *