let-pi-pi-1-1-x-2-arctan-x-dx-with-gt-0-1-find-a-simple-form-of-2-calculate- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36429 by prof Abdo imad last updated on 02/Jun/18 letφ(λ)=∫λππλ(1+1x2)arctan(x)dxwithλ>01)findasimpleformofφ(λ)2)calculateφ′(λ). Commented by abdo mathsup 649 cc last updated on 03/Jun/18 letintegratebypartsu′=1+1x2andv′=arctan(x)φ(λ)=[(1−1x)arctanx]λππλ−∫λππλ(1−1x)dx1+x2=(1−λπ)arctan(πλ)−(1−πλ)arctan(λπ)−∫λππλ(x−1)dxx(1+x2)but∫λππλx−1x(1+x2)dx=∫λππλdx1+x2−∫λππλdxx(1+x2)=arctan(πλ)−arctan(λπ)−∫λππλdxx(1+x2)butF(x)=1x(1+x2)=ax+bx+cx2+1a=1andlimx→+∞xF(x)=0=a+b⇒b=−1c=0⇒∫λππλdxx(1+x2)=∫λππλ{1x−x1+x2}dx=[ln∣x∣−12ln(1+x2)]λππλ=[ln∣x1+x2∣]λππλ=ln∣πλ1+(πλ)2∣−ln∣λπ1+(λπ)2φ(λ)=(1−λπ)arctan(πλ)−(1−πλ)arctan(λπ)−ln∣πλ1+(πλ)2∣+ln∣λπ1+(λπ)2∣. Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18 ∫λΠΠλ(1+x2x2)tan−1xdxI=∫(1+1x2)tan−1xdx=tan−1x(x+−1x)−∫11+x2×(x2−1x)dx=(x2−1x)tan−1x−∫x2−1x(x2+1)=(x2−1x)tan−1x−∫x2+1−2x(x2+1)dx=(x2−1x)tan−1x−∫dxx+2∫xdxx2(x2+1)=(x2−1x)tan−1x−lnx+∫dtt(t+1)=(x2−1x)tan−1x−lnx+∫t+1−t(t+1)tdt=(x2−1x)tan−1x−lnx+ln(tt+1)=(x2−1x)tan−1x−lnx+ln(x2x2+1)nowputupperandlowerlimit Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: tan-m-m-1-tan-1-2m-1-Next Next post: calculate-0-1-x-1-x-2-1-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.