Menu Close

let-pi-pi-1-1-x-2-arctan-x-dx-with-gt-0-1-find-a-simple-form-of-2-calculate-




Question Number 36429 by prof Abdo imad last updated on 02/Jun/18
let  ϕ(λ) = ∫_(λ/π) ^(π/λ) (1+(1/x^2 ))arctan(x)dx with λ>0  1) find a simple form of ϕ(λ)  2) calculate ϕ^′ (λ).
letφ(λ)=λππλ(1+1x2)arctan(x)dxwithλ>01)findasimpleformofφ(λ)2)calculateφ(λ).
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
let integrate by parts  u^′  =1+(1/x^2 ) and  v^′  = arctan(x)   ϕ(λ) = [(1−(1/x))arctanx]_(λ/π) ^(π/λ)    −∫_(λ/π) ^(π/λ)   (1−(1/x)) (dx/(1+x^2 ))  =(1−(λ/π))arctan((π/λ)) −(1−(π/λ)) arctan((λ/π))  −∫_(λ/π) ^(π/λ)    (((x−1)dx)/(x(1+x^2 ))) but  ∫_(λ/π) ^(π/λ)    ((x−1)/(x(1+x^2 )))dx = ∫_(λ/π) ^(π/λ)    (dx/(1+x^2 )) −∫_(λ/π) ^(π/λ)    (dx/(x(1+x^2 )))  = arctan((π/λ)) −arctan((λ/π)) −∫_(λ/π) ^(π/λ)    (dx/(x(1+x^2 ))) but  F(x)= (1/(x(1+x^2 )))  = (a/x) +((bx+c)/(x^2  +1))  a= 1    and lim_(x→+∞) x F(x)=0= a+b ⇒b=−1  c=0 ⇒ ∫_(λ/π) ^(π/λ)   (dx/(x(1+x^2 ))) = ∫_(λ/π) ^(π/λ)   { (1/x) −(x/(1+x^2 ))}dx  =[ln ∣x∣ −(1/2)ln(1+x^2 )]_(λ/π) ^(π/λ)   =[ln∣  (x/( (√(1+x^2 ))))∣]_(λ/π) ^(π/λ)  = ln∣ (π/(λ(√(1+((π/λ))^2 ))))∣−ln∣ (λ/(π(√(1+((λ/π))^2 ))))  ϕ(λ) =(1−(λ/π))arctan((π/λ)) −(1−(π/λ))arctan((λ/π))  −ln∣(π/(λ(√(1+((π/λ))^2 ))))∣ +ln∣  (λ/(π(√(1+((λ/π))^2 ))))∣ .
letintegratebypartsu=1+1x2andv=arctan(x)φ(λ)=[(11x)arctanx]λππλλππλ(11x)dx1+x2=(1λπ)arctan(πλ)(1πλ)arctan(λπ)λππλ(x1)dxx(1+x2)butλππλx1x(1+x2)dx=λππλdx1+x2λππλdxx(1+x2)=arctan(πλ)arctan(λπ)λππλdxx(1+x2)butF(x)=1x(1+x2)=ax+bx+cx2+1a=1andlimx+xF(x)=0=a+bb=1c=0λππλdxx(1+x2)=λππλ{1xx1+x2}dx=[lnx12ln(1+x2)]λππλ=[lnx1+x2]λππλ=lnπλ1+(πλ)2lnλπ1+(λπ)2φ(λ)=(1λπ)arctan(πλ)(1πλ)arctan(λπ)lnπλ1+(πλ)2+lnλπ1+(λπ)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
∫_(λ/Π) ^(Π/λ)  (((1+x^2 )/x^2 ))tan^(−1) x dx  I=∫(1+(1/x^2 ))tan^(−1) xdx  =tan^(−1) x(x+((−1)/x))−∫(1/(1+x^2 ))×(((x^2 −1)/x))dx  =(((x^2 −1)/x))tan^(−1) x−∫((x^2 −1)/(x(x^2 +1)))  =(((x^2 −1)/x))tan^(−1) x −∫((x^2 +1−2)/(x(x^2 +1)))dx  =(((x^2 −1)/x))tan^(−1) x−∫(dx/x)+2∫((xdx)/(x^2 (x^2 +1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+∫(dt/(t(t+1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+∫((t+1−t)/((t+1)t))dt  =(((x^2 −1)/x))tan^(−1) x−lnx+ln((t/(t+1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+ln((x^2 /(x^2 +1)))  now put upper and lower limit
λΠΠλ(1+x2x2)tan1xdxI=(1+1x2)tan1xdx=tan1x(x+1x)11+x2×(x21x)dx=(x21x)tan1xx21x(x2+1)=(x21x)tan1xx2+12x(x2+1)dx=(x21x)tan1xdxx+2xdxx2(x2+1)=(x21x)tan1xlnx+dtt(t+1)=(x21x)tan1xlnx+t+1t(t+1)tdt=(x21x)tan1xlnx+ln(tt+1)=(x21x)tan1xlnx+ln(x2x2+1)nowputupperandlowerlimit

Leave a Reply

Your email address will not be published. Required fields are marked *