Menu Close

Let-PQRS-be-a-rectangle-such-that-PQ-a-and-QR-b-Suppose-r-1-is-the-radius-of-the-circle-passing-through-P-and-Q-and-touching-RS-and-r-2-is-the-radius-of-the-circle-passing-through-Q-and-R-and-t




Question Number 18967 by Tinkutara last updated on 02/Aug/17
Let PQRS be a rectangle such that  PQ = a and QR = b. Suppose r_1  is the  radius of the circle passing through P  and Q and touching RS and r_2  is the  radius of the circle passing through Q  and R and touching PS. Show that :  5(a + b) ≤ 8(r_1  + r_2 )
$$\mathrm{Let}\:\mathrm{PQRS}\:\mathrm{be}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PQ}\:=\:{a}\:\mathrm{and}\:\mathrm{QR}\:=\:{b}.\:\mathrm{Suppose}\:\mathrm{r}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{P} \\ $$$$\mathrm{and}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{RS}\:\mathrm{and}\:\mathrm{r}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{Q} \\ $$$$\mathrm{and}\:\mathrm{R}\:\mathrm{and}\:\mathrm{touching}\:\mathrm{PS}.\:\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\mathrm{5}\left({a}\:+\:{b}\right)\:\leqslant\:\mathrm{8}\left(\mathrm{r}_{\mathrm{1}} \:+\:\mathrm{r}_{\mathrm{2}} \right) \\ $$
Commented by Tinkutara last updated on 02/Aug/17
Thank you very much ajfour Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{ajfour}\:\mathrm{Sir}! \\ $$
Commented by ajfour last updated on 02/Aug/17
Commented by ajfour last updated on 02/Aug/17
C_1 ≡[b−r_1 , (a/2)]       C_2 ≡[(b/2), a−r_2 ]  QC_1 ^2 =r_1 ^2 =(b−r_1 )^2 +(a^2 /4)    ....(i)  and    QC_2 ^2 =r_2 ^2 =(b^2 /4)+(a−r_2 )^2   ...(ii)  from (i):   b(2r_1 −b)=(a^2 /4)     ⇒  2r_1 =b+(a^2 /(4b))   or  8r_1 =4b+(a^2 /b)  and  from (ii):   a(2r_2 −a)=(b^2 /4)  or  8r_2 =4a+(b^2 /a)  adding these to get:   8(r_1 +r_2 )=4(a+b)+((a^2 /b)+(b^2 /a))  It remains to prove that                    (a^2 /b)+(b^2 /a) ≥ a+b  or              ((a^3 +b^3 )/(ab)) ≥ a+b  or       a^3 −a^2 b+b^3 −ab^2  ≥0  or       a^2 (a−b)−b^2 (a−b) ≥0             (a^2 −b^2 )(a−b) ≥ 0              (a+b)(a−b)^2  ≥ 0         which is true since a>0 , b>0 .
$$\mathrm{C}_{\mathrm{1}} \equiv\left[\mathrm{b}−\mathrm{r}_{\mathrm{1}} ,\:\frac{\mathrm{a}}{\mathrm{2}}\right]\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{2}} \equiv\left[\frac{\mathrm{b}}{\mathrm{2}},\:\mathrm{a}−\mathrm{r}_{\mathrm{2}} \right] \\ $$$$\mathrm{QC}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{r}_{\mathrm{1}} ^{\mathrm{2}} =\left(\mathrm{b}−\mathrm{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\:\:\:\:….\left(\mathrm{i}\right) \\ $$$$\mathrm{and}\:\:\:\:\mathrm{QC}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{r}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}+\left(\mathrm{a}−\mathrm{r}_{\mathrm{2}} \right)^{\mathrm{2}} \:\:…\left(\mathrm{ii}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{i}\right): \\ $$$$\:\mathrm{b}\left(\mathrm{2r}_{\mathrm{1}} −\mathrm{b}\right)=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\:\:\: \\ $$$$\Rightarrow\:\:\mathrm{2r}_{\mathrm{1}} =\mathrm{b}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4b}}\:\:\:\mathrm{or}\:\:\mathrm{8r}_{\mathrm{1}} =\mathrm{4b}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}} \\ $$$$\mathrm{and}\:\:\mathrm{from}\:\left(\mathrm{ii}\right): \\ $$$$\:\mathrm{a}\left(\mathrm{2r}_{\mathrm{2}} −\mathrm{a}\right)=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}\:\:\mathrm{or}\:\:\mathrm{8r}_{\mathrm{2}} =\mathrm{4a}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}} \\ $$$$\mathrm{adding}\:\mathrm{these}\:\mathrm{to}\:\mathrm{get}: \\ $$$$\:\mathrm{8}\left(\mathrm{r}_{\mathrm{1}} +\mathrm{r}_{\mathrm{2}} \right)=\mathrm{4}\left(\mathrm{a}+\mathrm{b}\right)+\left(\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}}\right) \\ $$$$\mathrm{It}\:\mathrm{remains}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}}\:\geqslant\:\mathrm{a}+\mathrm{b} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} }{\mathrm{ab}}\:\geqslant\:\mathrm{a}+\mathrm{b} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} −\mathrm{a}^{\mathrm{2}} \mathrm{b}+\mathrm{b}^{\mathrm{3}} −\mathrm{ab}^{\mathrm{2}} \:\geqslant\mathrm{0} \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{a}−\mathrm{b}\right)−\mathrm{b}^{\mathrm{2}} \left(\mathrm{a}−\mathrm{b}\right)\:\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)\left(\mathrm{a}−\mathrm{b}\right)\:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{which}\:\mathrm{is}\:\mathrm{true}\:\mathrm{since}\:\mathrm{a}>\mathrm{0}\:,\:\mathrm{b}>\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *