Menu Close

Let-PQRS-be-a-rectangle-such-that-PQ-a-and-QR-b-Suppose-r-1-is-the-radius-of-the-circle-passing-through-P-and-Q-and-touching-RS-and-r-2-is-the-radius-of-the-circle-passing-through-Q-and-R-and-t




Question Number 18967 by Tinkutara last updated on 02/Aug/17
Let PQRS be a rectangle such that  PQ = a and QR = b. Suppose r_1  is the  radius of the circle passing through P  and Q and touching RS and r_2  is the  radius of the circle passing through Q  and R and touching PS. Show that :  5(a + b) ≤ 8(r_1  + r_2 )
LetPQRSbearectanglesuchthatPQ=aandQR=b.Supposer1istheradiusofthecirclepassingthroughPandQandtouchingRSandr2istheradiusofthecirclepassingthroughQandRandtouchingPS.Showthat:5(a+b)8(r1+r2)
Commented by Tinkutara last updated on 02/Aug/17
Thank you very much ajfour Sir!
ThankyouverymuchajfourSir!
Commented by ajfour last updated on 02/Aug/17
Commented by ajfour last updated on 02/Aug/17
C_1 ≡[b−r_1 , (a/2)]       C_2 ≡[(b/2), a−r_2 ]  QC_1 ^2 =r_1 ^2 =(b−r_1 )^2 +(a^2 /4)    ....(i)  and    QC_2 ^2 =r_2 ^2 =(b^2 /4)+(a−r_2 )^2   ...(ii)  from (i):   b(2r_1 −b)=(a^2 /4)     ⇒  2r_1 =b+(a^2 /(4b))   or  8r_1 =4b+(a^2 /b)  and  from (ii):   a(2r_2 −a)=(b^2 /4)  or  8r_2 =4a+(b^2 /a)  adding these to get:   8(r_1 +r_2 )=4(a+b)+((a^2 /b)+(b^2 /a))  It remains to prove that                    (a^2 /b)+(b^2 /a) ≥ a+b  or              ((a^3 +b^3 )/(ab)) ≥ a+b  or       a^3 −a^2 b+b^3 −ab^2  ≥0  or       a^2 (a−b)−b^2 (a−b) ≥0             (a^2 −b^2 )(a−b) ≥ 0              (a+b)(a−b)^2  ≥ 0         which is true since a>0 , b>0 .
C1[br1,a2]C2[b2,ar2]QC12=r12=(br1)2+a24.(i)andQC22=r22=b24+(ar2)2(ii)from(i):b(2r1b)=a242r1=b+a24bor8r1=4b+a2bandfrom(ii):a(2r2a)=b24or8r2=4a+b2aaddingthesetoget:8(r1+r2)=4(a+b)+(a2b+b2a)Itremainstoprovethata2b+b2aa+bora3+b3aba+bora3a2b+b3ab20ora2(ab)b2(ab)0(a2b2)(ab)0(a+b)(ab)20whichistruesincea>0,b>0.

Leave a Reply

Your email address will not be published. Required fields are marked *